卷积神经网络的高效硬件加速

S. Kala, B. R. Jose, J. Mathew, N. Sivanandan
{"title":"卷积神经网络的高效硬件加速","authors":"S. Kala, B. R. Jose, J. Mathew, N. Sivanandan","doi":"10.1109/SOCC46988.2019.1570573948","DOIUrl":null,"url":null,"abstract":"Convolutional neural networks (CNNs) have emerged as the most efficient technique for solving a host of machine learning tasks. Compute and memory intensive nature of CNN has stimulated lot of work in hardware acceleration of these network models. FPGAs have emerged as a promising approach for accelerating CNNs, due to its high performance, flexibility and energy efficiency. We propose a unified architecture named UniWiG, where both Winograd based convolution and general matrix multiplication (GEMM) can be accelerated using the same set of processing elements. Proposed architecture has been used to accelerate AlexNet and VGG-16 models on FPGA with a performance of 433.63 GOPS and 407.23 GOPS respectively. We have also analyzed the performance with varying Winograd tile sizes and found out the most appropriate tile sizes for maximizing the performance while reducing on-chip memory resource.","PeriodicalId":253998,"journal":{"name":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Hardware Acceleration of Convolutional Neural Networks\",\"authors\":\"S. Kala, B. R. Jose, J. Mathew, N. Sivanandan\",\"doi\":\"10.1109/SOCC46988.2019.1570573948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutional neural networks (CNNs) have emerged as the most efficient technique for solving a host of machine learning tasks. Compute and memory intensive nature of CNN has stimulated lot of work in hardware acceleration of these network models. FPGAs have emerged as a promising approach for accelerating CNNs, due to its high performance, flexibility and energy efficiency. We propose a unified architecture named UniWiG, where both Winograd based convolution and general matrix multiplication (GEMM) can be accelerated using the same set of processing elements. Proposed architecture has been used to accelerate AlexNet and VGG-16 models on FPGA with a performance of 433.63 GOPS and 407.23 GOPS respectively. We have also analyzed the performance with varying Winograd tile sizes and found out the most appropriate tile sizes for maximizing the performance while reducing on-chip memory resource.\",\"PeriodicalId\":253998,\"journal\":{\"name\":\"2019 32nd IEEE International System-on-Chip Conference (SOCC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 32nd IEEE International System-on-Chip Conference (SOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC46988.2019.1570573948\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 32nd IEEE International System-on-Chip Conference (SOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC46988.2019.1570573948","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

卷积神经网络(cnn)已经成为解决大量机器学习任务的最有效技术。CNN的计算和内存密集型特性刺激了这些网络模型在硬件加速方面的大量工作。fpga由于其高性能、灵活性和高能效而成为加速cnn的一种很有前途的方法。我们提出了一个名为UniWiG的统一架构,其中基于Winograd的卷积和通用矩阵乘法(GEMM)都可以使用相同的处理元素集来加速。该架构在FPGA上对AlexNet和VGG-16模型进行了加速,性能分别为433.63 GOPS和407.23 GOPS。我们还分析了不同Winograd瓦片大小的性能,并找到了在减少片上内存资源的同时最大化性能的最合适的瓦片大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Hardware Acceleration of Convolutional Neural Networks
Convolutional neural networks (CNNs) have emerged as the most efficient technique for solving a host of machine learning tasks. Compute and memory intensive nature of CNN has stimulated lot of work in hardware acceleration of these network models. FPGAs have emerged as a promising approach for accelerating CNNs, due to its high performance, flexibility and energy efficiency. We propose a unified architecture named UniWiG, where both Winograd based convolution and general matrix multiplication (GEMM) can be accelerated using the same set of processing elements. Proposed architecture has been used to accelerate AlexNet and VGG-16 models on FPGA with a performance of 433.63 GOPS and 407.23 GOPS respectively. We have also analyzed the performance with varying Winograd tile sizes and found out the most appropriate tile sizes for maximizing the performance while reducing on-chip memory resource.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信