一种数字式CMOS全连接神经网络,具有在线学习能力和虚假吸引子自动识别能力

J. Gascuel, M. Weinfeld, S. Chakroun
{"title":"一种数字式CMOS全连接神经网络,具有在线学习能力和虚假吸引子自动识别能力","authors":"J. Gascuel, M. Weinfeld, S. Chakroun","doi":"10.1109/IJCNN.1991.155576","DOIUrl":null,"url":null,"abstract":"Describes a completely connected feedback network with 64 binary neurons, using digital CMOS technology. The architecture implements a linear systolic loop, in which each neuron stores locally its own synaptic coefficients, and the potential calculation needs N time steps, each performing N partial weighted sums, to realize the N/sup 2/ operations needed. It implements internal learning capabilities, using the Widrow-Hoff rule, which converges towards the pseudo-inverse rule by iteration, thus allowing partial correlation between prototypes, and a higher capacity, compared to the Hebb rule. Also, it implements an internal mechanism for detecting relaxations on spurious states. The average retrieval speed is about 20 mu s, whereas the learning time is approximately 15 to 30 ms for 15 moderately correlated prototypes.<<ETX>>","PeriodicalId":118990,"journal":{"name":"Euro ASIC '91","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A digital CMOS fully connected neural network with in-circuit learning capability and automatic identification of spurious attractors\",\"authors\":\"J. Gascuel, M. Weinfeld, S. Chakroun\",\"doi\":\"10.1109/IJCNN.1991.155576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes a completely connected feedback network with 64 binary neurons, using digital CMOS technology. The architecture implements a linear systolic loop, in which each neuron stores locally its own synaptic coefficients, and the potential calculation needs N time steps, each performing N partial weighted sums, to realize the N/sup 2/ operations needed. It implements internal learning capabilities, using the Widrow-Hoff rule, which converges towards the pseudo-inverse rule by iteration, thus allowing partial correlation between prototypes, and a higher capacity, compared to the Hebb rule. Also, it implements an internal mechanism for detecting relaxations on spurious states. The average retrieval speed is about 20 mu s, whereas the learning time is approximately 15 to 30 ms for 15 moderately correlated prototypes.<<ETX>>\",\"PeriodicalId\":118990,\"journal\":{\"name\":\"Euro ASIC '91\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Euro ASIC '91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1991.155576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euro ASIC '91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1991.155576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

描述了一个完全连接的反馈网络,64个二进制神经元,使用数字CMOS技术。该架构实现了一个线性收缩回路,其中每个神经元在局部存储自己的突触系数,潜在计算需要N个时间步,每个步执行N个部分加权和,以实现所需的N/sup 2/操作。它使用Widrow-Hoff规则实现内部学习能力,该规则通过迭代收敛于伪逆规则,从而允许原型之间的部分关联,并且与Hebb规则相比具有更高的容量。此外,它还实现了一种内部机制来检测虚假状态上的松弛。平均检索速度约为20 μ s,而15个中度相关原型的学习时间约为15 ~ 30 ms
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A digital CMOS fully connected neural network with in-circuit learning capability and automatic identification of spurious attractors
Describes a completely connected feedback network with 64 binary neurons, using digital CMOS technology. The architecture implements a linear systolic loop, in which each neuron stores locally its own synaptic coefficients, and the potential calculation needs N time steps, each performing N partial weighted sums, to realize the N/sup 2/ operations needed. It implements internal learning capabilities, using the Widrow-Hoff rule, which converges towards the pseudo-inverse rule by iteration, thus allowing partial correlation between prototypes, and a higher capacity, compared to the Hebb rule. Also, it implements an internal mechanism for detecting relaxations on spurious states. The average retrieval speed is about 20 mu s, whereas the learning time is approximately 15 to 30 ms for 15 moderately correlated prototypes.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信