基于多传感器融合的鲁棒激光雷达SLAM系统

Fubin Zhang, Bingshuo Zhang, Chenghao Sun
{"title":"基于多传感器融合的鲁棒激光雷达SLAM系统","authors":"Fubin Zhang, Bingshuo Zhang, Chenghao Sun","doi":"10.1109/ICCAIS56082.2022.9990085","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a LiDAR-based multi-sensor fusion SLAM system that integrates magnetometer, odometer and IMU information to solve the problem of accuracy degradation of lidar SLAM algorithm in scenes with insufficient structural features. In the lidar odometer part, based on the feature-based point cloud matching algorithm, magnetometer and odometer constraints are introduced to improve the robustness of the algorithm. At the back end, we constructed a factor graph for the global pose optimization, and added the measurement information of each sensor into the factor graph as a factor, so as to realize the nonlinear optimization of the pose and IMU bias. Experimental results show that the proposed algorithm has good robustness and accuracy, and is superior to LeGO-LOAM algorithm in positioning error.","PeriodicalId":273404,"journal":{"name":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Robust Lidar SLAM System Based on Multi-Sensor Fusion\",\"authors\":\"Fubin Zhang, Bingshuo Zhang, Chenghao Sun\",\"doi\":\"10.1109/ICCAIS56082.2022.9990085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a LiDAR-based multi-sensor fusion SLAM system that integrates magnetometer, odometer and IMU information to solve the problem of accuracy degradation of lidar SLAM algorithm in scenes with insufficient structural features. In the lidar odometer part, based on the feature-based point cloud matching algorithm, magnetometer and odometer constraints are introduced to improve the robustness of the algorithm. At the back end, we constructed a factor graph for the global pose optimization, and added the measurement information of each sensor into the factor graph as a factor, so as to realize the nonlinear optimization of the pose and IMU bias. Experimental results show that the proposed algorithm has good robustness and accuracy, and is superior to LeGO-LOAM algorithm in positioning error.\",\"PeriodicalId\":273404,\"journal\":{\"name\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAIS56082.2022.9990085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS56082.2022.9990085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于lidar的多传感器融合SLAM系统,该系统集成了磁强计、里程计和IMU信息,解决了lidar SLAM算法在结构特征不足的场景下精度下降的问题。在激光雷达里程表部分,在基于特征的点云匹配算法的基础上,引入磁力计和里程表约束,提高算法的鲁棒性。在后端,我们构建了全局位姿优化的因子图,并将各传感器的测量信息作为因子加入到因子图中,实现了位姿和IMU偏置的非线性优化。实验结果表明,该算法具有良好的鲁棒性和精度,在定位误差上优于LeGO-LOAM算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Lidar SLAM System Based on Multi-Sensor Fusion
In this paper, we propose a LiDAR-based multi-sensor fusion SLAM system that integrates magnetometer, odometer and IMU information to solve the problem of accuracy degradation of lidar SLAM algorithm in scenes with insufficient structural features. In the lidar odometer part, based on the feature-based point cloud matching algorithm, magnetometer and odometer constraints are introduced to improve the robustness of the algorithm. At the back end, we constructed a factor graph for the global pose optimization, and added the measurement information of each sensor into the factor graph as a factor, so as to realize the nonlinear optimization of the pose and IMU bias. Experimental results show that the proposed algorithm has good robustness and accuracy, and is superior to LeGO-LOAM algorithm in positioning error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信