{"title":"硬件计量","authors":"F. Koushanfar, Gang Qu","doi":"10.1145/378239.378568","DOIUrl":null,"url":null,"abstract":"We introduce the first hardware metering scheme that enables reliable low overhead proofs for the number of manufactured parts. The key idea is to make each design slightly different. Therefore, if two identical hardware designs or a design that is not reported by the foundry are detected, the design house has proof of misconduct. We start by establishing the connection between the requirements for hardware and synthesis process. Furthermore, we present mathematical analysis of statistical accuracy of the proposed hardware metering scheme. The effectiveness of the metering scheme is demonstrated on a number of designs.","PeriodicalId":154316,"journal":{"name":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"130","resultStr":"{\"title\":\"Hardware metering\",\"authors\":\"F. Koushanfar, Gang Qu\",\"doi\":\"10.1145/378239.378568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the first hardware metering scheme that enables reliable low overhead proofs for the number of manufactured parts. The key idea is to make each design slightly different. Therefore, if two identical hardware designs or a design that is not reported by the foundry are detected, the design house has proof of misconduct. We start by establishing the connection between the requirements for hardware and synthesis process. Furthermore, we present mathematical analysis of statistical accuracy of the proposed hardware metering scheme. The effectiveness of the metering scheme is demonstrated on a number of designs.\",\"PeriodicalId\":154316,\"journal\":{\"name\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"130\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/378239.378568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/378239.378568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce the first hardware metering scheme that enables reliable low overhead proofs for the number of manufactured parts. The key idea is to make each design slightly different. Therefore, if two identical hardware designs or a design that is not reported by the foundry are detected, the design house has proof of misconduct. We start by establishing the connection between the requirements for hardware and synthesis process. Furthermore, we present mathematical analysis of statistical accuracy of the proposed hardware metering scheme. The effectiveness of the metering scheme is demonstrated on a number of designs.