面向目标类的子空间检测用于高光谱图像的有效分类

Md. Tanvir Ahmed, Md. Ali Hossain, Md. Al Mamun
{"title":"面向目标类的子空间检测用于高光谱图像的有效分类","authors":"Md. Tanvir Ahmed, Md. Ali Hossain, Md. Al Mamun","doi":"10.1109/CEEICT.2018.8628167","DOIUrl":null,"url":null,"abstract":"Achieving high classification accuracy in hyperspectral image classification is a challenging task. This problem can be addressed by reducing the irrelevant features for the task of classification. Principal Component Analysis (PCA) is a popular feature extraction technique but it depends solely on global variance which makes it limited for some application. To address this, a target class oriented feature reduction method is proposed which incorporates the normalized Mutual Information (NMI) over PCA images to maximize the relevance of the selected subspace. Experimental analysis is performed to assess the effectiveness of the proposed method and the selected subspace is evaluated using kernel Support Vector Machine (KSVM) classifier. The proposed approach can achieve 96.57%classification accuracy on real hyperspectral data which is better than the standard approaches studied.","PeriodicalId":417359,"journal":{"name":"2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Target Class Oriented Subspace Detection for Effective Hyperspectral Image Classification\",\"authors\":\"Md. Tanvir Ahmed, Md. Ali Hossain, Md. Al Mamun\",\"doi\":\"10.1109/CEEICT.2018.8628167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving high classification accuracy in hyperspectral image classification is a challenging task. This problem can be addressed by reducing the irrelevant features for the task of classification. Principal Component Analysis (PCA) is a popular feature extraction technique but it depends solely on global variance which makes it limited for some application. To address this, a target class oriented feature reduction method is proposed which incorporates the normalized Mutual Information (NMI) over PCA images to maximize the relevance of the selected subspace. Experimental analysis is performed to assess the effectiveness of the proposed method and the selected subspace is evaluated using kernel Support Vector Machine (KSVM) classifier. The proposed approach can achieve 96.57%classification accuracy on real hyperspectral data which is better than the standard approaches studied.\",\"PeriodicalId\":417359,\"journal\":{\"name\":\"2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEICT.2018.8628167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEICT.2018.8628167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高光谱图像分类中,实现较高的分类精度是一项具有挑战性的任务。这个问题可以通过减少与分类任务无关的特征来解决。主成分分析(PCA)是一种流行的特征提取技术,但它仅仅依赖于全局方差,这使得它在某些应用中受到限制。为了解决这个问题,提出了一种面向目标类的特征约简方法,该方法在PCA图像上结合归一化互信息(NMI)来最大化所选子空间的相关性。通过实验分析来评估该方法的有效性,并使用核支持向量机(KSVM)分类器对所选择的子空间进行评估。该方法对实际高光谱数据的分类准确率达到96.57%,优于已有的标准分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Target Class Oriented Subspace Detection for Effective Hyperspectral Image Classification
Achieving high classification accuracy in hyperspectral image classification is a challenging task. This problem can be addressed by reducing the irrelevant features for the task of classification. Principal Component Analysis (PCA) is a popular feature extraction technique but it depends solely on global variance which makes it limited for some application. To address this, a target class oriented feature reduction method is proposed which incorporates the normalized Mutual Information (NMI) over PCA images to maximize the relevance of the selected subspace. Experimental analysis is performed to assess the effectiveness of the proposed method and the selected subspace is evaluated using kernel Support Vector Machine (KSVM) classifier. The proposed approach can achieve 96.57%classification accuracy on real hyperspectral data which is better than the standard approaches studied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信