用于高效三维电容提取的高阶Nystrom方案

S. Kapur, D. Long
{"title":"用于高效三维电容提取的高阶Nystrom方案","authors":"S. Kapur, D. Long","doi":"10.1145/288548.288604","DOIUrl":null,"url":null,"abstract":"Integral equation based approaches are popular for extracting the capacitance of integrated circuit structures. Typically, first order collocation or Galerkin methods are used. The resulting dense system of equations is efficiently solved by combining matrix sparsification with an iterative solver. While the speed-up over direct factorization is substantial, the first order methods still lead to large systems even for simple problems. We introduce a high order Nystrom scheme. For the same level of discretization, the high order schemes can be an order of magnitude more accurate than the first order approaches at the same computational cost. As a consequence, we obtain the same level of accuracy with a much smaller matrix.","PeriodicalId":224802,"journal":{"name":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"High-order Nystrom schemes for efficient 3-D capacitance extraction\",\"authors\":\"S. Kapur, D. Long\",\"doi\":\"10.1145/288548.288604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integral equation based approaches are popular for extracting the capacitance of integrated circuit structures. Typically, first order collocation or Galerkin methods are used. The resulting dense system of equations is efficiently solved by combining matrix sparsification with an iterative solver. While the speed-up over direct factorization is substantial, the first order methods still lead to large systems even for simple problems. We introduce a high order Nystrom scheme. For the same level of discretization, the high order schemes can be an order of magnitude more accurate than the first order approaches at the same computational cost. As a consequence, we obtain the same level of accuracy with a much smaller matrix.\",\"PeriodicalId\":224802,\"journal\":{\"name\":\"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/288548.288604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (IEEE Cat. No.98CB36287)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/288548.288604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

基于积分方程的方法是提取集成电路结构电容的常用方法。通常使用一阶搭配或伽辽金方法。将矩阵稀疏化与迭代求解器相结合,有效地求解了密集方程组。虽然与直接分解相比,一阶方法的加速是显著的,但即使对于简单的问题,一阶方法仍然会导致大型系统。我们引入了一个高阶Nystrom方案。对于相同的离散化水平,在相同的计算成本下,高阶格式可以比一阶方法精确一个数量级。因此,我们用一个小得多的矩阵获得了同样的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-order Nystrom schemes for efficient 3-D capacitance extraction
Integral equation based approaches are popular for extracting the capacitance of integrated circuit structures. Typically, first order collocation or Galerkin methods are used. The resulting dense system of equations is efficiently solved by combining matrix sparsification with an iterative solver. While the speed-up over direct factorization is substantial, the first order methods still lead to large systems even for simple problems. We introduce a high order Nystrom scheme. For the same level of discretization, the high order schemes can be an order of magnitude more accurate than the first order approaches at the same computational cost. As a consequence, we obtain the same level of accuracy with a much smaller matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信