基于卫星和地面观测的高时空分辨率PM2.5浓度估算:以纽约市为例

Yongquan Zhao, B. Huang, A. Marinoni, P. Gamba
{"title":"基于卫星和地面观测的高时空分辨率PM2.5浓度估算:以纽约市为例","authors":"Yongquan Zhao, B. Huang, A. Marinoni, P. Gamba","doi":"10.1109/EE1.2018.8385255","DOIUrl":null,"url":null,"abstract":"High spatiotemporal resolution concentration of fine particulate matter (PM2.5) enables accurate and detailed air quality monitoring, especially for metropolitan cities with high levels of population density. Although ground air quality monitoring stations can provide timely and accurate observations, they are usually very sparsely distributed, and cannot provide PM2.5 concentration data with continuous spatial coverage. Instead, satellite observations, e.g., Landsat 8/Thermal Infrared Sensor (TIRS) and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS), can both obtain data with continuous coverage. However, there is a trade-off between satellite sensors' spatial and temporal resolution. Hence, this study presents an estimation model for PM2.5 concentrations that combines these multi-source data to produce high spatiotemporal resolution concentration maps in urban area. The approach is tested on New York City, NY, USA. Specifically, we first use cloud-free MODIS thermal band images and the corresponding ground-station PM2.5 records to build a local PM2.5 prediction model. Then, we exploit a spatiotemporal image fusion technique to obtain Landsat-like thermal band image series from Landsat 8/TIRS (100 m spatial resolution) and Terra/MODIS (1 km spatial resolution) sensors. Finally, we convert the fused high spatiotemporal resolution thermal band images to PM2.5 concentration maps by the prediction model from step 1. The validation between the estimated and the real PM2.5 values shows that the detailed Landsat-like high spatial resolution PM2.5 estimations are more accurate than the original blurred MODIS one.","PeriodicalId":173047,"journal":{"name":"2018 IEEE International Conference on Environmental Engineering (EE)","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"High spatiotemporal resolution PM2.5 concentration estimation with satellite and ground observations: A case study in New York City\",\"authors\":\"Yongquan Zhao, B. Huang, A. Marinoni, P. Gamba\",\"doi\":\"10.1109/EE1.2018.8385255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High spatiotemporal resolution concentration of fine particulate matter (PM2.5) enables accurate and detailed air quality monitoring, especially for metropolitan cities with high levels of population density. Although ground air quality monitoring stations can provide timely and accurate observations, they are usually very sparsely distributed, and cannot provide PM2.5 concentration data with continuous spatial coverage. Instead, satellite observations, e.g., Landsat 8/Thermal Infrared Sensor (TIRS) and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS), can both obtain data with continuous coverage. However, there is a trade-off between satellite sensors' spatial and temporal resolution. Hence, this study presents an estimation model for PM2.5 concentrations that combines these multi-source data to produce high spatiotemporal resolution concentration maps in urban area. The approach is tested on New York City, NY, USA. Specifically, we first use cloud-free MODIS thermal band images and the corresponding ground-station PM2.5 records to build a local PM2.5 prediction model. Then, we exploit a spatiotemporal image fusion technique to obtain Landsat-like thermal band image series from Landsat 8/TIRS (100 m spatial resolution) and Terra/MODIS (1 km spatial resolution) sensors. Finally, we convert the fused high spatiotemporal resolution thermal band images to PM2.5 concentration maps by the prediction model from step 1. The validation between the estimated and the real PM2.5 values shows that the detailed Landsat-like high spatial resolution PM2.5 estimations are more accurate than the original blurred MODIS one.\",\"PeriodicalId\":173047,\"journal\":{\"name\":\"2018 IEEE International Conference on Environmental Engineering (EE)\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Environmental Engineering (EE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EE1.2018.8385255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Environmental Engineering (EE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EE1.2018.8385255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

高时空分辨率的细颗粒物(PM2.5)浓度可以实现准确和详细的空气质量监测,特别是对于人口密度高的大都市。地面空气质量监测站虽然可以提供及时准确的观测,但通常分布非常稀疏,无法提供连续空间覆盖的PM2.5浓度数据。相反,卫星观测,例如Landsat 8/热红外传感器(TIRS)和Terra/中分辨率成像光谱仪(MODIS),都可以获得连续覆盖的数据。然而,卫星传感器的空间和时间分辨率之间存在权衡。因此,本研究提出了一个结合这些多源数据的PM2.5浓度估算模型,以生成城市地区高时空分辨率的浓度图。该方法在美国纽约州纽约市进行了测试。具体而言,我们首先利用无云MODIS热带图像和相应的地面站PM2.5记录,构建局部PM2.5预测模型。然后,我们利用时空图像融合技术,从Landsat 8/TIRS (100 m空间分辨率)和Terra/MODIS (1 km空间分辨率)传感器获得类似Landsat的热带图像序列。最后,通过步骤1的预测模型将融合后的高时空分辨率热带图像转换为PM2.5浓度图。PM2.5估计值与真实值之间的验证表明,详细的类landsat高空间分辨率PM2.5估计值比原始模糊的MODIS估计值更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High spatiotemporal resolution PM2.5 concentration estimation with satellite and ground observations: A case study in New York City
High spatiotemporal resolution concentration of fine particulate matter (PM2.5) enables accurate and detailed air quality monitoring, especially for metropolitan cities with high levels of population density. Although ground air quality monitoring stations can provide timely and accurate observations, they are usually very sparsely distributed, and cannot provide PM2.5 concentration data with continuous spatial coverage. Instead, satellite observations, e.g., Landsat 8/Thermal Infrared Sensor (TIRS) and Terra/Moderate Resolution Imaging Spectroradiometer (MODIS), can both obtain data with continuous coverage. However, there is a trade-off between satellite sensors' spatial and temporal resolution. Hence, this study presents an estimation model for PM2.5 concentrations that combines these multi-source data to produce high spatiotemporal resolution concentration maps in urban area. The approach is tested on New York City, NY, USA. Specifically, we first use cloud-free MODIS thermal band images and the corresponding ground-station PM2.5 records to build a local PM2.5 prediction model. Then, we exploit a spatiotemporal image fusion technique to obtain Landsat-like thermal band image series from Landsat 8/TIRS (100 m spatial resolution) and Terra/MODIS (1 km spatial resolution) sensors. Finally, we convert the fused high spatiotemporal resolution thermal band images to PM2.5 concentration maps by the prediction model from step 1. The validation between the estimated and the real PM2.5 values shows that the detailed Landsat-like high spatial resolution PM2.5 estimations are more accurate than the original blurred MODIS one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信