基于掩模R-CNN算法的鲜Excelsa豆缺陷检测与分类

A. Yumang, Ma. Chloe M. Sta. Juana, Regina Liza C. Diloy
{"title":"基于掩模R-CNN算法的鲜Excelsa豆缺陷检测与分类","authors":"A. Yumang, Ma. Chloe M. Sta. Juana, Regina Liza C. Diloy","doi":"10.1109/ICCAE55086.2022.9762416","DOIUrl":null,"url":null,"abstract":"This study focuses on creating a system that detects and classifies defective fresh Excelsa beans. Mask R-CNN is a Convolutional Neural Network model that predicts classes and generates bounding boxes and segmentation masks for each class. The pre-trained model that will be used is called Detectron2 Mask R-CNN, and it will be trained in the Google Colab to learn the features of each Defective Fresh Excelsa bean, namely, Black Bean, Sour Bean, Cut Bean, and Insect Damaged Bean. To test the model’s accuracy in detecting and classifying the model, the researchers will use the Raspberry Pi 4 with a camera and take a picture of 40 fresh Excelsa beans. The system will automatically detect and classify the Fresh Excelsa bean. Then the output will be displayed in the Raspberry Pi LCD. With the gathered data, the model achieved an accuracy of 87.5%.","PeriodicalId":294641,"journal":{"name":"2022 14th International Conference on Computer and Automation Engineering (ICCAE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Detection and Classification of Defective Fresh Excelsa Beans Using Mask R-CNN Algorithm\",\"authors\":\"A. Yumang, Ma. Chloe M. Sta. Juana, Regina Liza C. Diloy\",\"doi\":\"10.1109/ICCAE55086.2022.9762416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on creating a system that detects and classifies defective fresh Excelsa beans. Mask R-CNN is a Convolutional Neural Network model that predicts classes and generates bounding boxes and segmentation masks for each class. The pre-trained model that will be used is called Detectron2 Mask R-CNN, and it will be trained in the Google Colab to learn the features of each Defective Fresh Excelsa bean, namely, Black Bean, Sour Bean, Cut Bean, and Insect Damaged Bean. To test the model’s accuracy in detecting and classifying the model, the researchers will use the Raspberry Pi 4 with a camera and take a picture of 40 fresh Excelsa beans. The system will automatically detect and classify the Fresh Excelsa bean. Then the output will be displayed in the Raspberry Pi LCD. With the gathered data, the model achieved an accuracy of 87.5%.\",\"PeriodicalId\":294641,\"journal\":{\"name\":\"2022 14th International Conference on Computer and Automation Engineering (ICCAE)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Computer and Automation Engineering (ICCAE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAE55086.2022.9762416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computer and Automation Engineering (ICCAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAE55086.2022.9762416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本研究的重点是创建一个检测和分类有缺陷的新鲜Excelsa豆的系统。Mask R-CNN是一种卷积神经网络模型,用于预测类并为每个类生成边界框和分割掩码。将使用的预训练模型称为Detectron2 Mask R-CNN,它将在Google Colab中进行训练,以学习每一种有缺陷的新鲜Excelsa豆的特征,即黑豆,酸豆,切豆和虫损豆。为了测试模型在检测和分类模型方面的准确性,研究人员将使用带有相机的树莓派4,并拍摄40颗新鲜Excelsa豆的照片。该系统将自动检测和分类新鲜Excelsa豆。然后在Raspberry Pi LCD上显示输出结果。利用收集到的数据,该模型的准确率达到87.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detection and Classification of Defective Fresh Excelsa Beans Using Mask R-CNN Algorithm
This study focuses on creating a system that detects and classifies defective fresh Excelsa beans. Mask R-CNN is a Convolutional Neural Network model that predicts classes and generates bounding boxes and segmentation masks for each class. The pre-trained model that will be used is called Detectron2 Mask R-CNN, and it will be trained in the Google Colab to learn the features of each Defective Fresh Excelsa bean, namely, Black Bean, Sour Bean, Cut Bean, and Insect Damaged Bean. To test the model’s accuracy in detecting and classifying the model, the researchers will use the Raspberry Pi 4 with a camera and take a picture of 40 fresh Excelsa beans. The system will automatically detect and classify the Fresh Excelsa bean. Then the output will be displayed in the Raspberry Pi LCD. With the gathered data, the model achieved an accuracy of 87.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信