基于OG-CNTFET的神经杆学习阶段的电模拟

Jean-Marie Retrouvey, Jacques-Olivier Klein, Si-Yu Liao, C. Maneux
{"title":"基于OG-CNTFET的神经杆学习阶段的电模拟","authors":"Jean-Marie Retrouvey, Jacques-Olivier Klein, Si-Yu Liao, C. Maneux","doi":"10.1109/DTIS.2010.5487555","DOIUrl":null,"url":null,"abstract":"As the fabrication cost of CMOS mask increases exponentially while the technology is approaching its physical limits, research interest focuses on emerging technologies and alternative architectures. Non-volatile components are considered as possible alternative technologies and neural networks constitute an interesting framework. Here, we present a learning strategy applied to a new non volatile device: the Optically Gated Carbon Nanotube Field Effect Transistor (OG-CNTFET). In this paper, electrical simulations using accurate compact model demonstrate the efficiency of this method to learn linearly separable Boolean functions.","PeriodicalId":423978,"journal":{"name":"5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era","volume":"104 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Electrical simulation of learning stage in OG-CNTFET based neural crossbar\",\"authors\":\"Jean-Marie Retrouvey, Jacques-Olivier Klein, Si-Yu Liao, C. Maneux\",\"doi\":\"10.1109/DTIS.2010.5487555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the fabrication cost of CMOS mask increases exponentially while the technology is approaching its physical limits, research interest focuses on emerging technologies and alternative architectures. Non-volatile components are considered as possible alternative technologies and neural networks constitute an interesting framework. Here, we present a learning strategy applied to a new non volatile device: the Optically Gated Carbon Nanotube Field Effect Transistor (OG-CNTFET). In this paper, electrical simulations using accurate compact model demonstrate the efficiency of this method to learn linearly separable Boolean functions.\",\"PeriodicalId\":423978,\"journal\":{\"name\":\"5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era\",\"volume\":\"104 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTIS.2010.5487555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Design & Technology of Integrated Systems in Nanoscale Era","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIS.2010.5487555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

随着CMOS掩模的制造成本呈指数级增长,而该技术正接近其物理极限,研究兴趣集中在新兴技术和替代架构上。非易失性组件被认为是可能的替代技术,神经网络构成了一个有趣的框架。在这里,我们提出了一种应用于新型非易失性器件的学习策略:光门控碳纳米管场效应晶体管(OG-CNTFET)。本文用精确的紧凑模型进行了电学仿真,验证了该方法学习线性可分布尔函数的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical simulation of learning stage in OG-CNTFET based neural crossbar
As the fabrication cost of CMOS mask increases exponentially while the technology is approaching its physical limits, research interest focuses on emerging technologies and alternative architectures. Non-volatile components are considered as possible alternative technologies and neural networks constitute an interesting framework. Here, we present a learning strategy applied to a new non volatile device: the Optically Gated Carbon Nanotube Field Effect Transistor (OG-CNTFET). In this paper, electrical simulations using accurate compact model demonstrate the efficiency of this method to learn linearly separable Boolean functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信