基于纹理的时变矢量场时空相干可视化框架

D. Weiskopf, G. Erlebacher, T. Ertl
{"title":"基于纹理的时变矢量场时空相干可视化框架","authors":"D. Weiskopf, G. Erlebacher, T. Ertl","doi":"10.1109/VISUAL.2003.1250361","DOIUrl":null,"url":null,"abstract":"We propose unsteady flow advection-convolution (UFAC) as a novel visualization approach for unsteady flows. It performs time evolution governed by pathlines, but builds spatial correlation according to instantaneous streamlines whose spatial extent is controlled by the flow unsteadiness. UFAC is derived from a generic framework that provides spacetime-coherent dense representations of time dependent-vector fields by a two-step process: 1) construction of continuous trajectories in spacetime for temporal coherence; and 2) convolution along another set of paths through the above spacetime for spatially correlated patterns. Within the framework, known visualization techniques-such as Lagrangian-Eulerian advection, image-based flow visualization, unsteady flow LIC, and dynamic LIC-can be reproduced, often with better image quality, higher performance, or increased flexibility of the visualization style. Finally, we present a texture-based discretization of the framework and its interactive implementation on graphics hardware, which allows the user to gradually balance visualization speed against quality.","PeriodicalId":372131,"journal":{"name":"IEEE Visualization, 2003. VIS 2003.","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":"{\"title\":\"A texture-based framework for spacetime-coherent visualization of time-dependent vector fields\",\"authors\":\"D. Weiskopf, G. Erlebacher, T. Ertl\",\"doi\":\"10.1109/VISUAL.2003.1250361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose unsteady flow advection-convolution (UFAC) as a novel visualization approach for unsteady flows. It performs time evolution governed by pathlines, but builds spatial correlation according to instantaneous streamlines whose spatial extent is controlled by the flow unsteadiness. UFAC is derived from a generic framework that provides spacetime-coherent dense representations of time dependent-vector fields by a two-step process: 1) construction of continuous trajectories in spacetime for temporal coherence; and 2) convolution along another set of paths through the above spacetime for spatially correlated patterns. Within the framework, known visualization techniques-such as Lagrangian-Eulerian advection, image-based flow visualization, unsteady flow LIC, and dynamic LIC-can be reproduced, often with better image quality, higher performance, or increased flexibility of the visualization style. Finally, we present a texture-based discretization of the framework and its interactive implementation on graphics hardware, which allows the user to gradually balance visualization speed against quality.\",\"PeriodicalId\":372131,\"journal\":{\"name\":\"IEEE Visualization, 2003. VIS 2003.\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Visualization, 2003. VIS 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VISUAL.2003.1250361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Visualization, 2003. VIS 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VISUAL.2003.1250361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

摘要

本文提出了一种新的非定常流场平流-卷积(UFAC)可视化方法。它由路径控制时间演化,但根据瞬时流线建立空间相关性,瞬时流线的空间范围受流动不稳定性控制。UFAC源自一个通用框架,该框架通过两步过程提供了时间相关向量场的时空相干密集表示:1)在时空中构建连续轨迹以实现时间相干;2)对空间相关模式沿另一组路径通过上述时空进行卷积。在该框架内,可以再现已知的可视化技术,如拉格朗日-欧拉平流、基于图像的流动可视化、非定常流LIC和动态LIC,通常具有更好的图像质量、更高的性能或更大的可视化风格的灵活性。最后,我们提出了一个基于纹理的框架离散化及其在图形硬件上的交互实现,它允许用户逐渐平衡可视化速度和质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A texture-based framework for spacetime-coherent visualization of time-dependent vector fields
We propose unsteady flow advection-convolution (UFAC) as a novel visualization approach for unsteady flows. It performs time evolution governed by pathlines, but builds spatial correlation according to instantaneous streamlines whose spatial extent is controlled by the flow unsteadiness. UFAC is derived from a generic framework that provides spacetime-coherent dense representations of time dependent-vector fields by a two-step process: 1) construction of continuous trajectories in spacetime for temporal coherence; and 2) convolution along another set of paths through the above spacetime for spatially correlated patterns. Within the framework, known visualization techniques-such as Lagrangian-Eulerian advection, image-based flow visualization, unsteady flow LIC, and dynamic LIC-can be reproduced, often with better image quality, higher performance, or increased flexibility of the visualization style. Finally, we present a texture-based discretization of the framework and its interactive implementation on graphics hardware, which allows the user to gradually balance visualization speed against quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信