利用机器学习算法从蜂窝网络数据中分类旅行模式

Leo Tišljarić, Dominik Cvetek, V. Vareškić, M. Gregurić
{"title":"利用机器学习算法从蜂窝网络数据中分类旅行模式","authors":"Leo Tišljarić, Dominik Cvetek, V. Vareškić, M. Gregurić","doi":"10.1109/ELMAR52657.2021.9550817","DOIUrl":null,"url":null,"abstract":"Data availability in recent years has grown exponentially, allowing researchers in the transport sector to harness valuable information regarding traffic flows. In that sense, cellular network data represents valuable traffic information when dealing with spatially large areas due to its property of collecting route data using distant mobile base stations. This property enables the automatic collection of origin-destination data, which is traditionally collected using field or online questionnaires. This paper aims to present the possibility of using origin-destination data extracted from cellular network dataset to classify travel modes. A case study was performed on the dataset collected in the City of Rijeka, Croatia. Dataset is evaluated on five machine learning algorithms, which resulted in Random forest as the highest performing algorithm with an accuracy score of 99.93%.","PeriodicalId":410503,"journal":{"name":"2021 International Symposium ELMAR","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Travel Modes from Cellular Network Data Using Machine Learning Algorithms\",\"authors\":\"Leo Tišljarić, Dominik Cvetek, V. Vareškić, M. Gregurić\",\"doi\":\"10.1109/ELMAR52657.2021.9550817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data availability in recent years has grown exponentially, allowing researchers in the transport sector to harness valuable information regarding traffic flows. In that sense, cellular network data represents valuable traffic information when dealing with spatially large areas due to its property of collecting route data using distant mobile base stations. This property enables the automatic collection of origin-destination data, which is traditionally collected using field or online questionnaires. This paper aims to present the possibility of using origin-destination data extracted from cellular network dataset to classify travel modes. A case study was performed on the dataset collected in the City of Rijeka, Croatia. Dataset is evaluated on five machine learning algorithms, which resulted in Random forest as the highest performing algorithm with an accuracy score of 99.93%.\",\"PeriodicalId\":410503,\"journal\":{\"name\":\"2021 International Symposium ELMAR\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium ELMAR\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELMAR52657.2021.9550817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium ELMAR","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELMAR52657.2021.9550817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,数据的可用性呈指数级增长,使交通部门的研究人员能够利用有关交通流量的宝贵信息。从这个意义上说,蜂窝网络数据在处理空间大的区域时代表有价值的交通信息,因为它具有使用远程移动基站收集路线数据的特性。此属性支持自动收集始发目的地数据,传统上使用字段或在线问卷收集这些数据。本文旨在提出利用蜂窝网络数据集中提取的出发地数据对出行方式进行分类的可能性。对克罗地亚里耶卡市收集的数据集进行了案例研究。数据集在五种机器学习算法上进行了评估,结果表明Random forest是性能最高的算法,准确率达到99.93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of Travel Modes from Cellular Network Data Using Machine Learning Algorithms
Data availability in recent years has grown exponentially, allowing researchers in the transport sector to harness valuable information regarding traffic flows. In that sense, cellular network data represents valuable traffic information when dealing with spatially large areas due to its property of collecting route data using distant mobile base stations. This property enables the automatic collection of origin-destination data, which is traditionally collected using field or online questionnaires. This paper aims to present the possibility of using origin-destination data extracted from cellular network dataset to classify travel modes. A case study was performed on the dataset collected in the City of Rijeka, Croatia. Dataset is evaluated on five machine learning algorithms, which resulted in Random forest as the highest performing algorithm with an accuracy score of 99.93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信