使用功率测量作为异构多云环境中工作负载放置的基础

CCB '14 Pub Date : 2014-12-08 DOI:10.1145/2676662.2676678
Mascha Kurpicz-Briki, Anita Sobe, P. Felber
{"title":"使用功率测量作为异构多云环境中工作负载放置的基础","authors":"Mascha Kurpicz-Briki, Anita Sobe, P. Felber","doi":"10.1145/2676662.2676678","DOIUrl":null,"url":null,"abstract":"Distributed data centers for multi-cloud environments usually do not consist of homogeneous hardware as they are not built at the same time by the same owner. Assigning workloads to the most appropriate processing units is therefore a challenging task. In this paper we show how in the context of heterogeneous data centers power consumption can be used as a metric to drive scheduling.\n We study the performance and energy efficiency of a set of heterogeneous architectures for multiple micro-benchmarks (stressing CPU, memory and disk) and for a real-world cloud application. We observe from our results that some architectures are more energy efficient for disk-intense workloads, whereas others are better for CPU-intense workloads. This study provides the basis for workload characterization and cross-cloud scheduling under constraints of energy efficiency.","PeriodicalId":185263,"journal":{"name":"CCB '14","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Using power measurements as a basis for workload placement in heterogeneous multi-cloud environments\",\"authors\":\"Mascha Kurpicz-Briki, Anita Sobe, P. Felber\",\"doi\":\"10.1145/2676662.2676678\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed data centers for multi-cloud environments usually do not consist of homogeneous hardware as they are not built at the same time by the same owner. Assigning workloads to the most appropriate processing units is therefore a challenging task. In this paper we show how in the context of heterogeneous data centers power consumption can be used as a metric to drive scheduling.\\n We study the performance and energy efficiency of a set of heterogeneous architectures for multiple micro-benchmarks (stressing CPU, memory and disk) and for a real-world cloud application. We observe from our results that some architectures are more energy efficient for disk-intense workloads, whereas others are better for CPU-intense workloads. This study provides the basis for workload characterization and cross-cloud scheduling under constraints of energy efficiency.\",\"PeriodicalId\":185263,\"journal\":{\"name\":\"CCB '14\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CCB '14\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2676662.2676678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCB '14","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2676662.2676678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

用于多云环境的分布式数据中心通常不由同构硬件组成,因为它们不是由同一所有者同时构建的。因此,将工作负载分配给最合适的处理单元是一项具有挑战性的任务。在本文中,我们展示了如何在异构数据中心的上下文中将功耗用作驱动调度的度量。我们针对多个微基准测试(对CPU、内存和磁盘施加压力)和真实的云应用程序研究了一组异构架构的性能和能效。我们从结果中观察到,一些架构对于磁盘密集型工作负载更节能,而另一些架构则更适合cpu密集型工作负载。本研究为能效约束下的工作负载表征和跨云调度提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using power measurements as a basis for workload placement in heterogeneous multi-cloud environments
Distributed data centers for multi-cloud environments usually do not consist of homogeneous hardware as they are not built at the same time by the same owner. Assigning workloads to the most appropriate processing units is therefore a challenging task. In this paper we show how in the context of heterogeneous data centers power consumption can be used as a metric to drive scheduling. We study the performance and energy efficiency of a set of heterogeneous architectures for multiple micro-benchmarks (stressing CPU, memory and disk) and for a real-world cloud application. We observe from our results that some architectures are more energy efficient for disk-intense workloads, whereas others are better for CPU-intense workloads. This study provides the basis for workload characterization and cross-cloud scheduling under constraints of energy efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信