下一代压印设备,用于高质量的微光学元件

V. Kolli, F. Kloiber, S. Drieschner
{"title":"下一代压印设备,用于高质量的微光学元件","authors":"V. Kolli, F. Kloiber, S. Drieschner","doi":"10.1117/12.2657936","DOIUrl":null,"url":null,"abstract":"Micro-optics are in great demand and indispensable key enabling elements in various emerging markets. High quality wafer-level micro-optics attract huge commercial interest in prestigious applications like 3D sensing and imaging for AR/VR in smart devices and automotive lighting [1]. The consumers aspire to have comprehensive functionalities on their smart gadgets, to enhance their view of the real environment by superimposing a virtual world. 3D sensing cameras with Time-of-Flight (ToF) modules provide a revolutionary virtual reality and imaging. A typical ToF module demands various highly efficient nano and micro-optical elements [2,3]. The next generation imprint equipment provided by SUSS MicroTec offers a versatile and sophisticated imprint mechanism to resolve complex microscale structures on a single imprint equipment. The advanced technical features include enhanced imprint gap measurement and a levelling mechanism, tunable forces during imprint, advanced design of microscopes for high alignment accuracy and cost-effective UV-LED flood exposure with high intensities. These comprehensive functionalities also make it possible to manufacture larger sets of stacked micro lens arrays with low aberration and minimal distortion of lens geometry. In this talk, we will present the capabilities of SUSS equipment for imprinting micro lens arrays (MLA) with alignment accuracy ≤ 1μm and less geometry variation < 1 %, over a 200 mm wafer surface. Moreover, in a high volume manufacturing environment, key to productivity are consistent and repeatable fabrication processes and operations. Therefore, we will also show the reliability of our equipment and the repeatability of producing high quality MLAs.","PeriodicalId":212235,"journal":{"name":"Advanced Lithography","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Next generation imprint equipment for patterning high quality micro-optical elements\",\"authors\":\"V. Kolli, F. Kloiber, S. Drieschner\",\"doi\":\"10.1117/12.2657936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro-optics are in great demand and indispensable key enabling elements in various emerging markets. High quality wafer-level micro-optics attract huge commercial interest in prestigious applications like 3D sensing and imaging for AR/VR in smart devices and automotive lighting [1]. The consumers aspire to have comprehensive functionalities on their smart gadgets, to enhance their view of the real environment by superimposing a virtual world. 3D sensing cameras with Time-of-Flight (ToF) modules provide a revolutionary virtual reality and imaging. A typical ToF module demands various highly efficient nano and micro-optical elements [2,3]. The next generation imprint equipment provided by SUSS MicroTec offers a versatile and sophisticated imprint mechanism to resolve complex microscale structures on a single imprint equipment. The advanced technical features include enhanced imprint gap measurement and a levelling mechanism, tunable forces during imprint, advanced design of microscopes for high alignment accuracy and cost-effective UV-LED flood exposure with high intensities. These comprehensive functionalities also make it possible to manufacture larger sets of stacked micro lens arrays with low aberration and minimal distortion of lens geometry. In this talk, we will present the capabilities of SUSS equipment for imprinting micro lens arrays (MLA) with alignment accuracy ≤ 1μm and less geometry variation < 1 %, over a 200 mm wafer surface. Moreover, in a high volume manufacturing environment, key to productivity are consistent and repeatable fabrication processes and operations. Therefore, we will also show the reliability of our equipment and the repeatability of producing high quality MLAs.\",\"PeriodicalId\":212235,\"journal\":{\"name\":\"Advanced Lithography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2657936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2657936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在各种新兴市场中,微光学的需求量很大,是不可或缺的关键要素。高质量的晶圆级微光学在智能设备和汽车照明中的AR/VR 3D传感和成像等著名应用中吸引了巨大的商业兴趣[1]。消费者渴望在他们的智能设备上拥有全面的功能,通过叠加虚拟世界来增强他们对真实环境的看法。具有飞行时间(ToF)模块的3D传感相机提供了革命性的虚拟现实和成像。一个典型的ToF模块需要各种高效的纳米和微光学元件[2,3]。由SUSS MicroTec提供的下一代压印设备提供了一个多功能和复杂的压印机制,以解决单个压印设备上复杂的微尺度结构。先进的技术特点包括增强的压印间隙测量和调平机制,压印过程中的可调力,先进的显微镜设计,具有高对准精度和高强度的高成本效益的UV-LED洪水曝光。这些全面的功能也使得制造更大的具有低像差和最小透镜几何畸变的堆叠微透镜阵列成为可能。在本次演讲中,我们将展示SUSS设备在200mm晶圆表面上印迹微透镜阵列(MLA)的能力,其对准精度≤1μm,几何变化小于1%。此外,在大批量生产环境中,生产效率的关键是一致和可重复的制造工艺和操作。因此,我们还将展示我们设备的可靠性和生产高质量mla的可重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Next generation imprint equipment for patterning high quality micro-optical elements
Micro-optics are in great demand and indispensable key enabling elements in various emerging markets. High quality wafer-level micro-optics attract huge commercial interest in prestigious applications like 3D sensing and imaging for AR/VR in smart devices and automotive lighting [1]. The consumers aspire to have comprehensive functionalities on their smart gadgets, to enhance their view of the real environment by superimposing a virtual world. 3D sensing cameras with Time-of-Flight (ToF) modules provide a revolutionary virtual reality and imaging. A typical ToF module demands various highly efficient nano and micro-optical elements [2,3]. The next generation imprint equipment provided by SUSS MicroTec offers a versatile and sophisticated imprint mechanism to resolve complex microscale structures on a single imprint equipment. The advanced technical features include enhanced imprint gap measurement and a levelling mechanism, tunable forces during imprint, advanced design of microscopes for high alignment accuracy and cost-effective UV-LED flood exposure with high intensities. These comprehensive functionalities also make it possible to manufacture larger sets of stacked micro lens arrays with low aberration and minimal distortion of lens geometry. In this talk, we will present the capabilities of SUSS equipment for imprinting micro lens arrays (MLA) with alignment accuracy ≤ 1μm and less geometry variation < 1 %, over a 200 mm wafer surface. Moreover, in a high volume manufacturing environment, key to productivity are consistent and repeatable fabrication processes and operations. Therefore, we will also show the reliability of our equipment and the repeatability of producing high quality MLAs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信