H. Hsu, P. Chiou, Y. Chiu, S. Yen, C. Chang, C. H. Cheng
{"title":"采用窄带隙氧化钛半导体作为沟道封盖层的高迁移率InGaZnO薄膜晶体管","authors":"H. Hsu, P. Chiou, Y. Chiu, S. Yen, C. Chang, C. H. Cheng","doi":"10.1109/DRC.2014.6872320","DOIUrl":null,"url":null,"abstract":"Metal-oxide InGaZnO thin-film transistors (IGZO TFTs) have received substantial attention as potential substitutes for amorphous Si and/or polycrystalline Si in active-matrix liquid-crystal displays, active-matrix organic light emitted diodes (AMOLEDs), and three-dimensional (3D) display applications [1]-[2]. It is well known that the multi-alloy IGZO channel plays an important role in device characteristics such as subthreshold swing (SS) and field-effect mobility (μFE). Although the high-K gate dielectrics to lower operating voltage and threshold voltage (VT) of TFT devices have demonstrated [3]-[5], these critical issues on transfer characteristics still need to be overcome. The large SS and low μFE prevent them from being applied in fast-switching and high-resolution displays. In this paper, we demonstrate high mobility IGZO TFT with titanium oxide (TiOx) channel capping layer. Large μfe of 66 cm2/Vs and low SS of 79 mV/dec were achieved using narrow-bandgap TiOx (Eg~ 3.1eV) [6] with optimized 5-nm thickness. The similar bandgap and conduction band offset to those of IGZO are favorable to obtain a low resistance ohmic contact between amorphous IGZO and Al contact metals.","PeriodicalId":293780,"journal":{"name":"72nd Device Research Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High mobility InGaZnO thin film transistor using narrow-bandgap titanium-oxide semiconductor as channel capping layer\",\"authors\":\"H. Hsu, P. Chiou, Y. Chiu, S. Yen, C. Chang, C. H. Cheng\",\"doi\":\"10.1109/DRC.2014.6872320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-oxide InGaZnO thin-film transistors (IGZO TFTs) have received substantial attention as potential substitutes for amorphous Si and/or polycrystalline Si in active-matrix liquid-crystal displays, active-matrix organic light emitted diodes (AMOLEDs), and three-dimensional (3D) display applications [1]-[2]. It is well known that the multi-alloy IGZO channel plays an important role in device characteristics such as subthreshold swing (SS) and field-effect mobility (μFE). Although the high-K gate dielectrics to lower operating voltage and threshold voltage (VT) of TFT devices have demonstrated [3]-[5], these critical issues on transfer characteristics still need to be overcome. The large SS and low μFE prevent them from being applied in fast-switching and high-resolution displays. In this paper, we demonstrate high mobility IGZO TFT with titanium oxide (TiOx) channel capping layer. Large μfe of 66 cm2/Vs and low SS of 79 mV/dec were achieved using narrow-bandgap TiOx (Eg~ 3.1eV) [6] with optimized 5-nm thickness. The similar bandgap and conduction band offset to those of IGZO are favorable to obtain a low resistance ohmic contact between amorphous IGZO and Al contact metals.\",\"PeriodicalId\":293780,\"journal\":{\"name\":\"72nd Device Research Conference\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"72nd Device Research Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2014.6872320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"72nd Device Research Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2014.6872320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High mobility InGaZnO thin film transistor using narrow-bandgap titanium-oxide semiconductor as channel capping layer
Metal-oxide InGaZnO thin-film transistors (IGZO TFTs) have received substantial attention as potential substitutes for amorphous Si and/or polycrystalline Si in active-matrix liquid-crystal displays, active-matrix organic light emitted diodes (AMOLEDs), and three-dimensional (3D) display applications [1]-[2]. It is well known that the multi-alloy IGZO channel plays an important role in device characteristics such as subthreshold swing (SS) and field-effect mobility (μFE). Although the high-K gate dielectrics to lower operating voltage and threshold voltage (VT) of TFT devices have demonstrated [3]-[5], these critical issues on transfer characteristics still need to be overcome. The large SS and low μFE prevent them from being applied in fast-switching and high-resolution displays. In this paper, we demonstrate high mobility IGZO TFT with titanium oxide (TiOx) channel capping layer. Large μfe of 66 cm2/Vs and low SS of 79 mV/dec were achieved using narrow-bandgap TiOx (Eg~ 3.1eV) [6] with optimized 5-nm thickness. The similar bandgap and conduction band offset to those of IGZO are favorable to obtain a low resistance ohmic contact between amorphous IGZO and Al contact metals.