Ivan Pratama Putra, Rusbandi Rusbandi, Derry Alamsyah
{"title":"玉米叶疾病的分类方法是通过神经联导网络对其进行分类","authors":"Ivan Pratama Putra, Rusbandi Rusbandi, Derry Alamsyah","doi":"10.35957/algoritme.v2i2.2360","DOIUrl":null,"url":null,"abstract":"Jagung merupakan tanaman pangan utama ketiga setelah padi dan terigu di dunia dan menempati posisi kedua setelah padi di Indonesia. Penyakit tanaman sering kali disebabkan oleh aktifitas atau serangan organism di dalam bagian tubuh tanaman, di luar tubuh, atau di sekitarnya. Penelitian ini bertujuan untuk mengklasifikasikan penyakit daun jagung menggunakan metode convolutional neural network (CNN) dengan arsitektur Resnet 50 dengan optimizer Adam, Nadam dan SGD. Dataset terdapat 4225 citra di pisahkan menjadi 3380 data train, 845 data test. Citra yang digunakan di resize menjadi ukuran 224x224. Pada penelitian ini mendapatkan hasil tingkat akurasi tertinggi untuk arsitektur Resnet 50 dengan menggunakan optimizer Adam didapatkan tingkat akurasi sebesar 98,4%.","PeriodicalId":447117,"journal":{"name":"Jurnal Algoritme","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network\",\"authors\":\"Ivan Pratama Putra, Rusbandi Rusbandi, Derry Alamsyah\",\"doi\":\"10.35957/algoritme.v2i2.2360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Jagung merupakan tanaman pangan utama ketiga setelah padi dan terigu di dunia dan menempati posisi kedua setelah padi di Indonesia. Penyakit tanaman sering kali disebabkan oleh aktifitas atau serangan organism di dalam bagian tubuh tanaman, di luar tubuh, atau di sekitarnya. Penelitian ini bertujuan untuk mengklasifikasikan penyakit daun jagung menggunakan metode convolutional neural network (CNN) dengan arsitektur Resnet 50 dengan optimizer Adam, Nadam dan SGD. Dataset terdapat 4225 citra di pisahkan menjadi 3380 data train, 845 data test. Citra yang digunakan di resize menjadi ukuran 224x224. Pada penelitian ini mendapatkan hasil tingkat akurasi tertinggi untuk arsitektur Resnet 50 dengan menggunakan optimizer Adam didapatkan tingkat akurasi sebesar 98,4%.\",\"PeriodicalId\":447117,\"journal\":{\"name\":\"Jurnal Algoritme\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Algoritme\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35957/algoritme.v2i2.2360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Algoritme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35957/algoritme.v2i2.2360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Klasifikasi Penyakit Daun Jagung Menggunakan Metode Convolutional Neural Network
Jagung merupakan tanaman pangan utama ketiga setelah padi dan terigu di dunia dan menempati posisi kedua setelah padi di Indonesia. Penyakit tanaman sering kali disebabkan oleh aktifitas atau serangan organism di dalam bagian tubuh tanaman, di luar tubuh, atau di sekitarnya. Penelitian ini bertujuan untuk mengklasifikasikan penyakit daun jagung menggunakan metode convolutional neural network (CNN) dengan arsitektur Resnet 50 dengan optimizer Adam, Nadam dan SGD. Dataset terdapat 4225 citra di pisahkan menjadi 3380 data train, 845 data test. Citra yang digunakan di resize menjadi ukuran 224x224. Pada penelitian ini mendapatkan hasil tingkat akurasi tertinggi untuk arsitektur Resnet 50 dengan menggunakan optimizer Adam didapatkan tingkat akurasi sebesar 98,4%.