智能卡系统故障诊断新方法

S. Klengel, S. Brand, Christian Grose, F. Altmann, M. Petzold
{"title":"智能卡系统故障诊断新方法","authors":"S. Klengel, S. Brand, Christian Grose, F. Altmann, M. Petzold","doi":"10.1109/ESTC.2014.6962793","DOIUrl":null,"url":null,"abstract":"Currently smart cards with integrated silicon dies have found wide application for personal authorization, security identification and payment systems. As a consequence, the complexity of electronics is increasing, thus, specifically adapted failure analysis methods and work flows are required taking the peculiarities of smart card constructions with embedded chips as well as the used polymer materials into account. The aim of the paper is to present results of developing novel methods for non-destructive defect detection as well as for selective, artifact-poor target preparation routines specifically adapted for smart card systems. These methods allow fault localization and exposing defect areas for subsequent high resolution failure analysis within reliability investigations. As for non-destructive diagnostics, specific focus was given to the evaluation and application development of Lock-in thermography (LIT) as a method to detect thermally active failures such as increased contact resistivity, shorts or leakage currents. It could be shown that Lock-in thermography can be successfully applied for fault isolation of defects within the card and on the semiconductor surface. The LIT investigations were complemented by Scanning Acoustic Microscopy (SAM) in order to find delamination and chip cracks. New signal processing methods of ultrasonic microscopy resulted in a reliable detection of these mechanical damages. Scanning Acoustic Microscopy in the GHz frequency (GHz-SAM) domain was applied for investigations on chip level. Contact-induced mechanical damage just below the only few micrometer thick optically non-transparent passivation of the IC could be detected with high lateral resolution. However, for a detailed root cause analysis of the failures localized either by Lock-in thermography or Scanning Acoustic Microscopy, further adequate preparation routines are necessary to get direct access to the failure site. Within the study, a selective exposure of the semiconductor chips from the composite laminate was achieved by laser ablation after optimizing laser frequencies and pulse widths as well as by adapted wet chemical procedures. Efficient cross section preparation was enabled by ion beam finish. A case study on how the methods can be applied for failure analysis of smart cards will be demonstrated.","PeriodicalId":299981,"journal":{"name":"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel failure diagnostic methods for smart card systems\",\"authors\":\"S. Klengel, S. Brand, Christian Grose, F. Altmann, M. Petzold\",\"doi\":\"10.1109/ESTC.2014.6962793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently smart cards with integrated silicon dies have found wide application for personal authorization, security identification and payment systems. As a consequence, the complexity of electronics is increasing, thus, specifically adapted failure analysis methods and work flows are required taking the peculiarities of smart card constructions with embedded chips as well as the used polymer materials into account. The aim of the paper is to present results of developing novel methods for non-destructive defect detection as well as for selective, artifact-poor target preparation routines specifically adapted for smart card systems. These methods allow fault localization and exposing defect areas for subsequent high resolution failure analysis within reliability investigations. As for non-destructive diagnostics, specific focus was given to the evaluation and application development of Lock-in thermography (LIT) as a method to detect thermally active failures such as increased contact resistivity, shorts or leakage currents. It could be shown that Lock-in thermography can be successfully applied for fault isolation of defects within the card and on the semiconductor surface. The LIT investigations were complemented by Scanning Acoustic Microscopy (SAM) in order to find delamination and chip cracks. New signal processing methods of ultrasonic microscopy resulted in a reliable detection of these mechanical damages. Scanning Acoustic Microscopy in the GHz frequency (GHz-SAM) domain was applied for investigations on chip level. Contact-induced mechanical damage just below the only few micrometer thick optically non-transparent passivation of the IC could be detected with high lateral resolution. However, for a detailed root cause analysis of the failures localized either by Lock-in thermography or Scanning Acoustic Microscopy, further adequate preparation routines are necessary to get direct access to the failure site. Within the study, a selective exposure of the semiconductor chips from the composite laminate was achieved by laser ablation after optimizing laser frequencies and pulse widths as well as by adapted wet chemical procedures. Efficient cross section preparation was enabled by ion beam finish. A case study on how the methods can be applied for failure analysis of smart cards will be demonstrated.\",\"PeriodicalId\":299981,\"journal\":{\"name\":\"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESTC.2014.6962793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Electronics System-integration Technology Conference (ESTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESTC.2014.6962793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,集成硅芯片的智能卡已广泛应用于个人授权、安全识别和支付系统。因此,电子产品的复杂性正在增加,因此,需要专门适应故障分析方法和工作流程,以考虑嵌入式芯片智能卡结构的特性以及使用的聚合物材料。本文的目的是介绍开发无损缺陷检测的新方法的结果,以及专门适用于智能卡系统的选择性、人工制品差的目标准备程序。这些方法允许故障定位和暴露缺陷区域,以便在可靠性调查中进行后续的高分辨率故障分析。至于非破坏性诊断,特别关注锁定热成像(LIT)的评估和应用开发,作为检测热活动故障(如接触电阻率增加、短路或泄漏电流)的方法。结果表明,锁相热成像技术可以成功地应用于卡内和半导体表面缺陷的故障隔离。扫描声学显微镜(SAM)补充了LIT调查,以发现分层和切屑裂纹。新的超声显微镜信号处理方法导致这些机械损伤的可靠检测。采用GHz频段扫描声学显微镜(GHz- sam)技术对芯片级进行了研究。接触引起的机械损伤仅低于几微米厚的IC的光学不透明钝化可以检测到高横向分辨率。然而,对于通过锁定热成像或扫描声学显微镜对局部故障进行详细的根本原因分析,需要进一步充分的准备程序来直接进入故障现场。在该研究中,通过优化激光频率和脉冲宽度以及采用适当的湿化学程序,通过激光烧蚀实现了复合材料层压板上半导体芯片的选择性暴露。离子束精加工实现了高效的截面制备。本课程将以个案研究的方式,示范这些方法如何应用于智能卡的失效分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel failure diagnostic methods for smart card systems
Currently smart cards with integrated silicon dies have found wide application for personal authorization, security identification and payment systems. As a consequence, the complexity of electronics is increasing, thus, specifically adapted failure analysis methods and work flows are required taking the peculiarities of smart card constructions with embedded chips as well as the used polymer materials into account. The aim of the paper is to present results of developing novel methods for non-destructive defect detection as well as for selective, artifact-poor target preparation routines specifically adapted for smart card systems. These methods allow fault localization and exposing defect areas for subsequent high resolution failure analysis within reliability investigations. As for non-destructive diagnostics, specific focus was given to the evaluation and application development of Lock-in thermography (LIT) as a method to detect thermally active failures such as increased contact resistivity, shorts or leakage currents. It could be shown that Lock-in thermography can be successfully applied for fault isolation of defects within the card and on the semiconductor surface. The LIT investigations were complemented by Scanning Acoustic Microscopy (SAM) in order to find delamination and chip cracks. New signal processing methods of ultrasonic microscopy resulted in a reliable detection of these mechanical damages. Scanning Acoustic Microscopy in the GHz frequency (GHz-SAM) domain was applied for investigations on chip level. Contact-induced mechanical damage just below the only few micrometer thick optically non-transparent passivation of the IC could be detected with high lateral resolution. However, for a detailed root cause analysis of the failures localized either by Lock-in thermography or Scanning Acoustic Microscopy, further adequate preparation routines are necessary to get direct access to the failure site. Within the study, a selective exposure of the semiconductor chips from the composite laminate was achieved by laser ablation after optimizing laser frequencies and pulse widths as well as by adapted wet chemical procedures. Efficient cross section preparation was enabled by ion beam finish. A case study on how the methods can be applied for failure analysis of smart cards will be demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信