GPU加速自动语音识别的移动设备

R. Veitch, R. Woods, Louis-Marie Aubert
{"title":"GPU加速自动语音识别的移动设备","authors":"R. Veitch, R. Woods, Louis-Marie Aubert","doi":"10.1109/INDIN.2011.6034999","DOIUrl":null,"url":null,"abstract":"The implementation of a complex, large vocabulary, speech recognition application on a modern graphic processors (GPUs) is presented. The parallel single instruction, multiple data (SIMD) architecture is effectively exploited by performing various optimizations to expose the algorithmic parallelism. The work addresses particularly the realization of the Gaussian calculation, a key function. The result is an implementation that runs 3.75 faster than real-time and gives a tenfold speedup when compared to a highly optimized sequential CPU-based implementation. The work is also compared with some earlier work involved in building the same system on a Virtex 5-based, Alpha Data XRC-5T1 reconfigurable computer.","PeriodicalId":378407,"journal":{"name":"2011 9th IEEE International Conference on Industrial Informatics","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"GPU acceleration of automated speech recognition for mobile devices\",\"authors\":\"R. Veitch, R. Woods, Louis-Marie Aubert\",\"doi\":\"10.1109/INDIN.2011.6034999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of a complex, large vocabulary, speech recognition application on a modern graphic processors (GPUs) is presented. The parallel single instruction, multiple data (SIMD) architecture is effectively exploited by performing various optimizations to expose the algorithmic parallelism. The work addresses particularly the realization of the Gaussian calculation, a key function. The result is an implementation that runs 3.75 faster than real-time and gives a tenfold speedup when compared to a highly optimized sequential CPU-based implementation. The work is also compared with some earlier work involved in building the same system on a Virtex 5-based, Alpha Data XRC-5T1 reconfigurable computer.\",\"PeriodicalId\":378407,\"journal\":{\"name\":\"2011 9th IEEE International Conference on Industrial Informatics\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 9th IEEE International Conference on Industrial Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN.2011.6034999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 9th IEEE International Conference on Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2011.6034999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

介绍了在现代图形处理器(gpu)上实现一个复杂的、大词汇量的语音识别应用。并行的单指令多数据(SIMD)架构通过执行各种优化来有效地利用算法的并行性。该工作特别讨论了高斯计算的实现,这是一个关键功能。结果是实现的运行速度比实时快3.75,与高度优化的基于顺序cpu的实现相比,速度提高了10倍。这项工作还与早期在基于Virtex 5的Alpha Data XRC-5T1可重构计算机上构建相同系统的一些工作进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GPU acceleration of automated speech recognition for mobile devices
The implementation of a complex, large vocabulary, speech recognition application on a modern graphic processors (GPUs) is presented. The parallel single instruction, multiple data (SIMD) architecture is effectively exploited by performing various optimizations to expose the algorithmic parallelism. The work addresses particularly the realization of the Gaussian calculation, a key function. The result is an implementation that runs 3.75 faster than real-time and gives a tenfold speedup when compared to a highly optimized sequential CPU-based implementation. The work is also compared with some earlier work involved in building the same system on a Virtex 5-based, Alpha Data XRC-5T1 reconfigurable computer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信