Nathan Yee, A. Lu, Y. Wang, M. Porter, Yuhao Zhang, H. Wong
{"title":"基于BV和(VFQ)−1协同优化的保护环终端GaN-on-GaN二极管快速逆设计","authors":"Nathan Yee, A. Lu, Y. Wang, M. Porter, Yuhao Zhang, H. Wong","doi":"10.1109/ISPSD57135.2023.10147511","DOIUrl":null,"url":null,"abstract":"GaN-on-GaN vertical diode is a promising device for next-generation power electronics. Its breakdown voltage (BV) is limited by edge termination designs such as guard rings. The design space of guard rings is huge and it is difficult to optimize manually. In this paper, we propose an effective inverse design strategy to co-optimize BV and (VFQ)−1, where BV, VF, and Q are the breakdown voltage, forward voltage, and reserve capacitive charge of the diode, respectively. Using rapid Technology Computer-Aided-Design (TCAD) simulations, neural network (NN), and Pareto front generation, a GaN-on-GaN diode is optimized within 24 hours. We can obtain structures with 200V higher BV at medium (VFQ)−1 or find a nearly ideal BV structure with 25% higher BV2/Ron compared to the best randomly generated TCAD data.","PeriodicalId":344266,"journal":{"name":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Rapid Inverse Design of GaN-on-GaN Diode with Guard Ring Termination for BV and (VFQ)−1 Co-Optimization\",\"authors\":\"Nathan Yee, A. Lu, Y. Wang, M. Porter, Yuhao Zhang, H. Wong\",\"doi\":\"10.1109/ISPSD57135.2023.10147511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GaN-on-GaN vertical diode is a promising device for next-generation power electronics. Its breakdown voltage (BV) is limited by edge termination designs such as guard rings. The design space of guard rings is huge and it is difficult to optimize manually. In this paper, we propose an effective inverse design strategy to co-optimize BV and (VFQ)−1, where BV, VF, and Q are the breakdown voltage, forward voltage, and reserve capacitive charge of the diode, respectively. Using rapid Technology Computer-Aided-Design (TCAD) simulations, neural network (NN), and Pareto front generation, a GaN-on-GaN diode is optimized within 24 hours. We can obtain structures with 200V higher BV at medium (VFQ)−1 or find a nearly ideal BV structure with 25% higher BV2/Ron compared to the best randomly generated TCAD data.\",\"PeriodicalId\":344266,\"journal\":{\"name\":\"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPSD57135.2023.10147511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPSD57135.2023.10147511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rapid Inverse Design of GaN-on-GaN Diode with Guard Ring Termination for BV and (VFQ)−1 Co-Optimization
GaN-on-GaN vertical diode is a promising device for next-generation power electronics. Its breakdown voltage (BV) is limited by edge termination designs such as guard rings. The design space of guard rings is huge and it is difficult to optimize manually. In this paper, we propose an effective inverse design strategy to co-optimize BV and (VFQ)−1, where BV, VF, and Q are the breakdown voltage, forward voltage, and reserve capacitive charge of the diode, respectively. Using rapid Technology Computer-Aided-Design (TCAD) simulations, neural network (NN), and Pareto front generation, a GaN-on-GaN diode is optimized within 24 hours. We can obtain structures with 200V higher BV at medium (VFQ)−1 or find a nearly ideal BV structure with 25% higher BV2/Ron compared to the best randomly generated TCAD data.