基于β -伯努利过程先验的鲁棒贝叶斯稀疏表示

Zengyuan Mi, Qin Lin, Yue Huang, Xinghao Ding
{"title":"基于β -伯努利过程先验的鲁棒贝叶斯稀疏表示","authors":"Zengyuan Mi, Qin Lin, Yue Huang, Xinghao Ding","doi":"10.1109/ICASID.2012.6325328","DOIUrl":null,"url":null,"abstract":"There has been a significant growing interest in the study of sparse representation recent years. Although many algorithms have been developed, outliers in the training data make the estimation unreliable. In the paper, we present a model under non-parametric Bayesian framework to solve the problem. The noise term in the sparse representation is decomposed into a Gaussian noise term and an outlier noise term, which we assume to be sparse. The beta-Bernoulli process is employed as a prior for finding sparse solutions.","PeriodicalId":408223,"journal":{"name":"Anti-counterfeiting, Security, and Identification","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Bayesian sparse representation based on beta-Bernoulli process prior\",\"authors\":\"Zengyuan Mi, Qin Lin, Yue Huang, Xinghao Ding\",\"doi\":\"10.1109/ICASID.2012.6325328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been a significant growing interest in the study of sparse representation recent years. Although many algorithms have been developed, outliers in the training data make the estimation unreliable. In the paper, we present a model under non-parametric Bayesian framework to solve the problem. The noise term in the sparse representation is decomposed into a Gaussian noise term and an outlier noise term, which we assume to be sparse. The beta-Bernoulli process is employed as a prior for finding sparse solutions.\",\"PeriodicalId\":408223,\"journal\":{\"name\":\"Anti-counterfeiting, Security, and Identification\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-counterfeiting, Security, and Identification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASID.2012.6325328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-counterfeiting, Security, and Identification","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASID.2012.6325328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对稀疏表示的研究越来越感兴趣。虽然已经开发了许多算法,但训练数据中的异常值使估计不可靠。本文提出了一个非参数贝叶斯框架下的模型来解决这一问题。稀疏表示中的噪声项分解为高斯噪声项和离群噪声项,假设离群噪声项是稀疏的。β -伯努利过程被用作寻找稀疏解的先验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Bayesian sparse representation based on beta-Bernoulli process prior
There has been a significant growing interest in the study of sparse representation recent years. Although many algorithms have been developed, outliers in the training data make the estimation unreliable. In the paper, we present a model under non-parametric Bayesian framework to solve the problem. The noise term in the sparse representation is decomposed into a Gaussian noise term and an outlier noise term, which we assume to be sparse. The beta-Bernoulli process is employed as a prior for finding sparse solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信