基于梯度域自然场景统计的盲图像质量评价

Tonghan Wang, H. Shu, Huizhen Jia, Baosheng Li, Lu Zhang
{"title":"基于梯度域自然场景统计的盲图像质量评价","authors":"Tonghan Wang, H. Shu, Huizhen Jia, Baosheng Li, Lu Zhang","doi":"10.1109/AMS.2014.22","DOIUrl":null,"url":null,"abstract":"An efficient, general-purpose, blind/no-reference image quality assessment (NR-IQA) algorithm based on natural image statistics in the gradient domain is proposed in this letter. We call it REFIINGS (REFerrenceless Image Integrity Notator using Gradient Statistics). The gradient of an image describes its geometric features which can be easily captured by the human visual system (HVS). In the literature, gradient-relevant methods have gotten big success in full-reference (FR) IQA and reduced-reference (RR) IQA. Inspired by these, we extend it to NR-IQA. REFIINGS utilizes the parameters of generalized Laplace distribution as part of its features, and the parameters are directly computed using given formulas which avoid parameters estimation. REFIINGS is computationally quite efficient which makes it an attractive option for the use in real-time blind assessment of visual quality. When tested on the benchmark image database, our method is quite promising.","PeriodicalId":198621,"journal":{"name":"2014 8th Asia Modelling Symposium","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Blind Image Quality Assessment Using Natural Scene Statistics in the Gradient Domain\",\"authors\":\"Tonghan Wang, H. Shu, Huizhen Jia, Baosheng Li, Lu Zhang\",\"doi\":\"10.1109/AMS.2014.22\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An efficient, general-purpose, blind/no-reference image quality assessment (NR-IQA) algorithm based on natural image statistics in the gradient domain is proposed in this letter. We call it REFIINGS (REFerrenceless Image Integrity Notator using Gradient Statistics). The gradient of an image describes its geometric features which can be easily captured by the human visual system (HVS). In the literature, gradient-relevant methods have gotten big success in full-reference (FR) IQA and reduced-reference (RR) IQA. Inspired by these, we extend it to NR-IQA. REFIINGS utilizes the parameters of generalized Laplace distribution as part of its features, and the parameters are directly computed using given formulas which avoid parameters estimation. REFIINGS is computationally quite efficient which makes it an attractive option for the use in real-time blind assessment of visual quality. When tested on the benchmark image database, our method is quite promising.\",\"PeriodicalId\":198621,\"journal\":{\"name\":\"2014 8th Asia Modelling Symposium\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 8th Asia Modelling Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2014.22\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 8th Asia Modelling Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2014.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于梯度域自然图像统计的高效、通用、盲/无参考图像质量评估(NR-IQA)算法。我们称之为REFIINGS(使用梯度统计的无参考图像完整性符号)。图像的梯度描述了它的几何特征,这些特征很容易被人类视觉系统(HVS)捕获。在文献中,梯度相关方法在全参考文献(FR) IQA和约简参考文献(RR) IQA中取得了很大的成功。受此启发,我们将其扩展到NR-IQA。REFIINGS利用广义拉普拉斯分布的参数作为其特征的一部分,并使用给定的公式直接计算参数,避免了参数估计。REFIINGS的计算效率很高,这使得它成为实时盲评估视觉质量的一个有吸引力的选择。在基准图像数据库上进行测试时,我们的方法非常有前途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Image Quality Assessment Using Natural Scene Statistics in the Gradient Domain
An efficient, general-purpose, blind/no-reference image quality assessment (NR-IQA) algorithm based on natural image statistics in the gradient domain is proposed in this letter. We call it REFIINGS (REFerrenceless Image Integrity Notator using Gradient Statistics). The gradient of an image describes its geometric features which can be easily captured by the human visual system (HVS). In the literature, gradient-relevant methods have gotten big success in full-reference (FR) IQA and reduced-reference (RR) IQA. Inspired by these, we extend it to NR-IQA. REFIINGS utilizes the parameters of generalized Laplace distribution as part of its features, and the parameters are directly computed using given formulas which avoid parameters estimation. REFIINGS is computationally quite efficient which makes it an attractive option for the use in real-time blind assessment of visual quality. When tested on the benchmark image database, our method is quite promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信