{"title":"一种高效的数据加密标准VLSI架构及其FPGA实现","authors":"J. Pandey, Aanchal Gurawa, H. Nehra, A. Karmakar","doi":"10.1109/VLSI-SATA.2016.7593054","DOIUrl":null,"url":null,"abstract":"To achieve the goal of secure communication, cryptography is an essential operation. Many applications, including health-monitoring and biometric data based recognition system, need short-term data security. To design short-term security based applications, there is an essential need of high-performance, low cost and area-efficient VLSI implementation of lightweight ciphers. Data encryption standard (DES) is well-suited for the implementation of low-cost lightweight cryptography applications. In this paper, we propose an efficient VLSI architecture for DES algorithm based encryption/decryption engine. Depending upon the encryption/decryption needs, the same set of architecture performs both encryption and decryption operations. In the implementation of DES algorithm, a chain of multiplexer-based architecture is used to implement the substitution operations (SBoxes). The proposed architecture is modeled in the VHDL design language and synthesized in the Xilinx Virtex-5 xc5vfx70t field-programmable gate array (FPGA) device. Hardware synthesis result shows that the proposed design utilizes only 1.07 % slice LUTs, 0.31 % slice registers and 29.22 % of bonded IOBs of the FPGA device fabric.","PeriodicalId":328401,"journal":{"name":"2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"An efficient VLSI architecture for data encryption standard and its FPGA implementation\",\"authors\":\"J. Pandey, Aanchal Gurawa, H. Nehra, A. Karmakar\",\"doi\":\"10.1109/VLSI-SATA.2016.7593054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To achieve the goal of secure communication, cryptography is an essential operation. Many applications, including health-monitoring and biometric data based recognition system, need short-term data security. To design short-term security based applications, there is an essential need of high-performance, low cost and area-efficient VLSI implementation of lightweight ciphers. Data encryption standard (DES) is well-suited for the implementation of low-cost lightweight cryptography applications. In this paper, we propose an efficient VLSI architecture for DES algorithm based encryption/decryption engine. Depending upon the encryption/decryption needs, the same set of architecture performs both encryption and decryption operations. In the implementation of DES algorithm, a chain of multiplexer-based architecture is used to implement the substitution operations (SBoxes). The proposed architecture is modeled in the VHDL design language and synthesized in the Xilinx Virtex-5 xc5vfx70t field-programmable gate array (FPGA) device. Hardware synthesis result shows that the proposed design utilizes only 1.07 % slice LUTs, 0.31 % slice registers and 29.22 % of bonded IOBs of the FPGA device fabric.\",\"PeriodicalId\":328401,\"journal\":{\"name\":\"2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-SATA.2016.7593054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on VLSI Systems, Architectures, Technology and Applications (VLSI-SATA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-SATA.2016.7593054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient VLSI architecture for data encryption standard and its FPGA implementation
To achieve the goal of secure communication, cryptography is an essential operation. Many applications, including health-monitoring and biometric data based recognition system, need short-term data security. To design short-term security based applications, there is an essential need of high-performance, low cost and area-efficient VLSI implementation of lightweight ciphers. Data encryption standard (DES) is well-suited for the implementation of low-cost lightweight cryptography applications. In this paper, we propose an efficient VLSI architecture for DES algorithm based encryption/decryption engine. Depending upon the encryption/decryption needs, the same set of architecture performs both encryption and decryption operations. In the implementation of DES algorithm, a chain of multiplexer-based architecture is used to implement the substitution operations (SBoxes). The proposed architecture is modeled in the VHDL design language and synthesized in the Xilinx Virtex-5 xc5vfx70t field-programmable gate array (FPGA) device. Hardware synthesis result shows that the proposed design utilizes only 1.07 % slice LUTs, 0.31 % slice registers and 29.22 % of bonded IOBs of the FPGA device fabric.