房颤分类器的嵌入式片上系统设计

Huey Woan Lim, Y. Hau, M. A. Othman, Chiao Wen Lim
{"title":"房颤分类器的嵌入式片上系统设计","authors":"Huey Woan Lim, Y. Hau, M. A. Othman, Chiao Wen Lim","doi":"10.1109/ISOCC.2017.8368784","DOIUrl":null,"url":null,"abstract":"Atrial Fibrillation (AFIB) is one of the major risk factors of stroke and heart failure which can be observed from the electrocardiogram (ECG). This paper presents an embedded system-on-chip (SoC) architecture design of AFIB detection based on stationary wavelet transform (SWT) and artificial neural network (ANN) algorithm for heart screening propose. The architecture is designed using the hardware/software co-design technique and prototyped on Altera DE2-115 FPGA platform. Hardware acceleration of compute intensive FFT operation is also carried out to enhance computation timing performance. The whole system consumes 40,830 LEs of Altera Cyclone-IV FPGA device. The total computation time of AFIB classifier is 22 seconds for 10 seconds ECG input data with the accuracy of 95.3% which able to detect AFIB rhythm, normal sinus rhythm, and non-AFIB rhythm.","PeriodicalId":248826,"journal":{"name":"2017 International SoC Design Conference (ISOCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Embedded system-on-chip design of atrial fibrillation classifier\",\"authors\":\"Huey Woan Lim, Y. Hau, M. A. Othman, Chiao Wen Lim\",\"doi\":\"10.1109/ISOCC.2017.8368784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial Fibrillation (AFIB) is one of the major risk factors of stroke and heart failure which can be observed from the electrocardiogram (ECG). This paper presents an embedded system-on-chip (SoC) architecture design of AFIB detection based on stationary wavelet transform (SWT) and artificial neural network (ANN) algorithm for heart screening propose. The architecture is designed using the hardware/software co-design technique and prototyped on Altera DE2-115 FPGA platform. Hardware acceleration of compute intensive FFT operation is also carried out to enhance computation timing performance. The whole system consumes 40,830 LEs of Altera Cyclone-IV FPGA device. The total computation time of AFIB classifier is 22 seconds for 10 seconds ECG input data with the accuracy of 95.3% which able to detect AFIB rhythm, normal sinus rhythm, and non-AFIB rhythm.\",\"PeriodicalId\":248826,\"journal\":{\"name\":\"2017 International SoC Design Conference (ISOCC)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International SoC Design Conference (ISOCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISOCC.2017.8368784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International SoC Design Conference (ISOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOCC.2017.8368784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

心房颤动(AFIB)是中风和心力衰竭的主要危险因素之一,可以从心电图(ECG)中观察到。本文提出了一种基于平稳小波变换(SWT)和人工神经网络(ANN)算法的AFIB检测的嵌入式片上系统(SoC)架构设计方案。该体系结构采用软硬件协同设计技术进行设计,并在Altera DE2-115 FPGA平台上进行原型设计。对计算密集型FFT运算进行硬件加速,提高计算时序性能。整个系统消耗Altera Cyclone-IV FPGA器件40,830 LEs。AFIB分类器对10秒心电输入数据的总计算时间为22秒,准确率为95.3%,能够检测到AFIB心律、正常窦性心律和非AFIB心律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded system-on-chip design of atrial fibrillation classifier
Atrial Fibrillation (AFIB) is one of the major risk factors of stroke and heart failure which can be observed from the electrocardiogram (ECG). This paper presents an embedded system-on-chip (SoC) architecture design of AFIB detection based on stationary wavelet transform (SWT) and artificial neural network (ANN) algorithm for heart screening propose. The architecture is designed using the hardware/software co-design technique and prototyped on Altera DE2-115 FPGA platform. Hardware acceleration of compute intensive FFT operation is also carried out to enhance computation timing performance. The whole system consumes 40,830 LEs of Altera Cyclone-IV FPGA device. The total computation time of AFIB classifier is 22 seconds for 10 seconds ECG input data with the accuracy of 95.3% which able to detect AFIB rhythm, normal sinus rhythm, and non-AFIB rhythm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信