一种基于自适应分辨率矢量量化的静态图像编码器,压缩比超过1/200,具有不必要的计算消除结构

M. Fujibayashi, T. Nozawa, T. Nakayama, K. Mochizuki, M. Konda, K. Kotani, S. Sugawa, T. Ohmi
{"title":"一种基于自适应分辨率矢量量化的静态图像编码器,压缩比超过1/200,具有不必要的计算消除结构","authors":"M. Fujibayashi, T. Nozawa, T. Nakayama, K. Mochizuki, M. Konda, K. Kotani, S. Sugawa, T. Ohmi","doi":"10.1109/VLSIC.2002.1015099","DOIUrl":null,"url":null,"abstract":"We have developed an advanced vector quantization (VQ) encoding hardware for still image encoding systems. By utilizing needless calculation elimination method, computational cost of VQ encoding is reduced to 40% or less, while maintaining the accuracy of full-search VQ. We have also developed a still image compression algorithm based on adaptive resolution VQ (AR-VQ), which realizes compression ratio over 1/200 while maintaining image quality. We have successfully implemented these two technologies into a still image encoding processor. The processor can compress still image of 1600/spl times/2400 pixels within one second, which is 60 times faster than software implementation on current PCs.","PeriodicalId":162493,"journal":{"name":"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A still image encoder based on adaptive resolution vector quantization realizing compression ratio over 1/200 featuring needless calculation elimination architecture\",\"authors\":\"M. Fujibayashi, T. Nozawa, T. Nakayama, K. Mochizuki, M. Konda, K. Kotani, S. Sugawa, T. Ohmi\",\"doi\":\"10.1109/VLSIC.2002.1015099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have developed an advanced vector quantization (VQ) encoding hardware for still image encoding systems. By utilizing needless calculation elimination method, computational cost of VQ encoding is reduced to 40% or less, while maintaining the accuracy of full-search VQ. We have also developed a still image compression algorithm based on adaptive resolution VQ (AR-VQ), which realizes compression ratio over 1/200 while maintaining image quality. We have successfully implemented these two technologies into a still image encoding processor. The processor can compress still image of 1600/spl times/2400 pixels within one second, which is 60 times faster than software implementation on current PCs.\",\"PeriodicalId\":162493,\"journal\":{\"name\":\"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2002.1015099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2002.1015099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们开发了一种先进的矢量量化(VQ)编码硬件,用于静止图像编码系统。利用不必要的计算消除方法,在保持全搜索VQ精度的前提下,将VQ编码的计算成本降低到40%以下。我们还开发了一种基于自适应分辨率VQ (AR-VQ)的静态图像压缩算法,在保持图像质量的同时实现了1/200以上的压缩比。我们已经成功地将这两种技术应用到静止图像编码处理器中。该处理器可以在1秒内压缩1600/spl倍/2400像素的静止图像,比目前pc上的软件实现速度快60倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A still image encoder based on adaptive resolution vector quantization realizing compression ratio over 1/200 featuring needless calculation elimination architecture
We have developed an advanced vector quantization (VQ) encoding hardware for still image encoding systems. By utilizing needless calculation elimination method, computational cost of VQ encoding is reduced to 40% or less, while maintaining the accuracy of full-search VQ. We have also developed a still image compression algorithm based on adaptive resolution VQ (AR-VQ), which realizes compression ratio over 1/200 while maintaining image quality. We have successfully implemented these two technologies into a still image encoding processor. The processor can compress still image of 1600/spl times/2400 pixels within one second, which is 60 times faster than software implementation on current PCs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信