基于神经网络的认知无线电系统最佳频带选择

Virginia Zúñiga-González, L. Camuñas-Mesa, B. Linares-Barranco, T. Serrano-Gotarredona, J. M. Rosa
{"title":"基于神经网络的认知无线电系统最佳频带选择","authors":"Virginia Zúñiga-González, L. Camuñas-Mesa, B. Linares-Barranco, T. Serrano-Gotarredona, J. M. Rosa","doi":"10.1109/ICECS49266.2020.9294894","DOIUrl":null,"url":null,"abstract":"The growing development of Internet of Things (IoT) devices is producing an increasing use of the electromagnetic spectrum for wireless communications. Cognitive Radio (CR) technology provides communication terminals with the capability to select arbitrary frequency bands dynamically in order to make a more efficient use of the frequency spectrum and bands occupied by different standards and communication protocols. In this work, we propose a system which uses Long Short-Term Memory (LSTM) networks to predict the future occupation of frequency bands and modifies the specifications of the analog and radio-frequency front-end, adapting dynamically to the best communication channel. System-level simulations of a band-pass filter are shown as a case study to validate the presented approach.","PeriodicalId":404022,"journal":{"name":"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","volume":"180 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using Neural Networks for Optimum band selection in Cognitive-Radio Systems\",\"authors\":\"Virginia Zúñiga-González, L. Camuñas-Mesa, B. Linares-Barranco, T. Serrano-Gotarredona, J. M. Rosa\",\"doi\":\"10.1109/ICECS49266.2020.9294894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The growing development of Internet of Things (IoT) devices is producing an increasing use of the electromagnetic spectrum for wireless communications. Cognitive Radio (CR) technology provides communication terminals with the capability to select arbitrary frequency bands dynamically in order to make a more efficient use of the frequency spectrum and bands occupied by different standards and communication protocols. In this work, we propose a system which uses Long Short-Term Memory (LSTM) networks to predict the future occupation of frequency bands and modifies the specifications of the analog and radio-frequency front-end, adapting dynamically to the best communication channel. System-level simulations of a band-pass filter are shown as a case study to validate the presented approach.\",\"PeriodicalId\":404022,\"journal\":{\"name\":\"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"volume\":\"180 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECS49266.2020.9294894\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th IEEE International Conference on Electronics, Circuits and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS49266.2020.9294894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

物联网(IoT)设备的日益发展正在产生越来越多的电磁频谱用于无线通信。认知无线电(CR)技术为通信终端提供了动态选择任意频段的能力,以便更有效地利用不同标准和通信协议所占用的频谱和频段。在这项工作中,我们提出了一个系统,该系统使用长短期记忆(LSTM)网络来预测未来的频带占用,并修改模拟和射频前端的规格,动态适应最佳通信信道。以带通滤波器的系统级仿真为例,验证了所提出的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Neural Networks for Optimum band selection in Cognitive-Radio Systems
The growing development of Internet of Things (IoT) devices is producing an increasing use of the electromagnetic spectrum for wireless communications. Cognitive Radio (CR) technology provides communication terminals with the capability to select arbitrary frequency bands dynamically in order to make a more efficient use of the frequency spectrum and bands occupied by different standards and communication protocols. In this work, we propose a system which uses Long Short-Term Memory (LSTM) networks to predict the future occupation of frequency bands and modifies the specifications of the analog and radio-frequency front-end, adapting dynamically to the best communication channel. System-level simulations of a band-pass filter are shown as a case study to validate the presented approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信