评价反馈作为自动驾驶车辆转向行为优化的基础

K. Kuhnert, Michael Krödel
{"title":"评价反馈作为自动驾驶车辆转向行为优化的基础","authors":"K. Kuhnert, Michael Krödel","doi":"10.1109/ITSC.2005.1520128","DOIUrl":null,"url":null,"abstract":"Steering an autonomous vehicle requires the permanent adaptation of behavior in relationship to the various situations the vehicle is in. This paper describes a research which implements such adaptation and optimization based on reinforcement learning (RL) which in detail purely learns from evaluative feedback in contrast to instructive feedback. In this way it self-explores and self-optimises actions for situations in a defined environment. The target of this research is to determine to what extent RL-based systems serve as an enhancement or even an alternative to classical concepts of autonomous intelligent vehicles such as modelling or neural nets.","PeriodicalId":153203,"journal":{"name":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluative feedback as the basis for behavior optimization in the of autonomous vehicle steering\",\"authors\":\"K. Kuhnert, Michael Krödel\",\"doi\":\"10.1109/ITSC.2005.1520128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steering an autonomous vehicle requires the permanent adaptation of behavior in relationship to the various situations the vehicle is in. This paper describes a research which implements such adaptation and optimization based on reinforcement learning (RL) which in detail purely learns from evaluative feedback in contrast to instructive feedback. In this way it self-explores and self-optimises actions for situations in a defined environment. The target of this research is to determine to what extent RL-based systems serve as an enhancement or even an alternative to classical concepts of autonomous intelligent vehicles such as modelling or neural nets.\",\"PeriodicalId\":153203,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2005.1520128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2005.1520128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

驾驶自动驾驶汽车需要根据车辆所处的各种情况不断调整行为。本文描述了一项基于强化学习(RL)实现这种适应和优化的研究,该学习完全从评估反馈中学习,而不是从指导性反馈中学习。通过这种方式,它可以在特定的环境中自我探索和自我优化行动。本研究的目标是确定基于强化学习的系统在多大程度上可以作为自动智能车辆的经典概念(如建模或神经网络)的增强甚至替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluative feedback as the basis for behavior optimization in the of autonomous vehicle steering
Steering an autonomous vehicle requires the permanent adaptation of behavior in relationship to the various situations the vehicle is in. This paper describes a research which implements such adaptation and optimization based on reinforcement learning (RL) which in detail purely learns from evaluative feedback in contrast to instructive feedback. In this way it self-explores and self-optimises actions for situations in a defined environment. The target of this research is to determine to what extent RL-based systems serve as an enhancement or even an alternative to classical concepts of autonomous intelligent vehicles such as modelling or neural nets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信