{"title":"评价反馈作为自动驾驶车辆转向行为优化的基础","authors":"K. Kuhnert, Michael Krödel","doi":"10.1109/ITSC.2005.1520128","DOIUrl":null,"url":null,"abstract":"Steering an autonomous vehicle requires the permanent adaptation of behavior in relationship to the various situations the vehicle is in. This paper describes a research which implements such adaptation and optimization based on reinforcement learning (RL) which in detail purely learns from evaluative feedback in contrast to instructive feedback. In this way it self-explores and self-optimises actions for situations in a defined environment. The target of this research is to determine to what extent RL-based systems serve as an enhancement or even an alternative to classical concepts of autonomous intelligent vehicles such as modelling or neural nets.","PeriodicalId":153203,"journal":{"name":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluative feedback as the basis for behavior optimization in the of autonomous vehicle steering\",\"authors\":\"K. Kuhnert, Michael Krödel\",\"doi\":\"10.1109/ITSC.2005.1520128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Steering an autonomous vehicle requires the permanent adaptation of behavior in relationship to the various situations the vehicle is in. This paper describes a research which implements such adaptation and optimization based on reinforcement learning (RL) which in detail purely learns from evaluative feedback in contrast to instructive feedback. In this way it self-explores and self-optimises actions for situations in a defined environment. The target of this research is to determine to what extent RL-based systems serve as an enhancement or even an alternative to classical concepts of autonomous intelligent vehicles such as modelling or neural nets.\",\"PeriodicalId\":153203,\"journal\":{\"name\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2005.1520128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2005.1520128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluative feedback as the basis for behavior optimization in the of autonomous vehicle steering
Steering an autonomous vehicle requires the permanent adaptation of behavior in relationship to the various situations the vehicle is in. This paper describes a research which implements such adaptation and optimization based on reinforcement learning (RL) which in detail purely learns from evaluative feedback in contrast to instructive feedback. In this way it self-explores and self-optimises actions for situations in a defined environment. The target of this research is to determine to what extent RL-based systems serve as an enhancement or even an alternative to classical concepts of autonomous intelligent vehicles such as modelling or neural nets.