R. Pilard, D. Gloria, F. Gianesello, F. Le Pennec, C. Person
{"title":"94 GHz硅协集成LNA和天线在毫米波专用BiCMOS技术","authors":"R. Pilard, D. Gloria, F. Gianesello, F. Le Pennec, C. Person","doi":"10.1109/RFIC.2010.5477390","DOIUrl":null,"url":null,"abstract":"A co-integrated Low Noise Amplifier (LNA) with a dipole antenna is designed considering a millimeter-wave dedicated BiCMOS technology. The targeted application is a 94 GHz passive imaging for security applications. The LNA is based on a high-speed SiGe:C 130 nm HBT. The interest of the co-integration on a common silicon substrate is demonstrated through the decrease of insertion losses between the antenna and the amplifier. The capability of the BiCMOS9MW technology is illustrated to achieve this co-integration reaching a total gain of 3.0 dB (Gantenna + GLNA) for a power consumption of 11 mW, in a single-stage LNA configuration. A two-stage configuration achieves a total gain of 8.5 dB with a power consumption of 21 mW.","PeriodicalId":269027,"journal":{"name":"2010 IEEE Radio Frequency Integrated Circuits Symposium","volume":"290 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"94 GHz silicon co-integrated LNA and Antenna in a mm-wave dedicated BiCMOS technology\",\"authors\":\"R. Pilard, D. Gloria, F. Gianesello, F. Le Pennec, C. Person\",\"doi\":\"10.1109/RFIC.2010.5477390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A co-integrated Low Noise Amplifier (LNA) with a dipole antenna is designed considering a millimeter-wave dedicated BiCMOS technology. The targeted application is a 94 GHz passive imaging for security applications. The LNA is based on a high-speed SiGe:C 130 nm HBT. The interest of the co-integration on a common silicon substrate is demonstrated through the decrease of insertion losses between the antenna and the amplifier. The capability of the BiCMOS9MW technology is illustrated to achieve this co-integration reaching a total gain of 3.0 dB (Gantenna + GLNA) for a power consumption of 11 mW, in a single-stage LNA configuration. A two-stage configuration achieves a total gain of 8.5 dB with a power consumption of 21 mW.\",\"PeriodicalId\":269027,\"journal\":{\"name\":\"2010 IEEE Radio Frequency Integrated Circuits Symposium\",\"volume\":\"290 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Radio Frequency Integrated Circuits Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2010.5477390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Radio Frequency Integrated Circuits Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2010.5477390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
94 GHz silicon co-integrated LNA and Antenna in a mm-wave dedicated BiCMOS technology
A co-integrated Low Noise Amplifier (LNA) with a dipole antenna is designed considering a millimeter-wave dedicated BiCMOS technology. The targeted application is a 94 GHz passive imaging for security applications. The LNA is based on a high-speed SiGe:C 130 nm HBT. The interest of the co-integration on a common silicon substrate is demonstrated through the decrease of insertion losses between the antenna and the amplifier. The capability of the BiCMOS9MW technology is illustrated to achieve this co-integration reaching a total gain of 3.0 dB (Gantenna + GLNA) for a power consumption of 11 mW, in a single-stage LNA configuration. A two-stage configuration achieves a total gain of 8.5 dB with a power consumption of 21 mW.