智能运动前馈控制相关神经网络

Leontine Aarnoudse, W. Ohnishi, Maurice Poot, Paul Tacx, Nard Strijbosch, T. Oomen
{"title":"智能运动前馈控制相关神经网络","authors":"Leontine Aarnoudse, W. Ohnishi, Maurice Poot, Paul Tacx, Nard Strijbosch, T. Oomen","doi":"10.1109/ICM46511.2021.9385690","DOIUrl":null,"url":null,"abstract":"Neural networks have large potential for motion feedforward because of their ability to approximate a wide range of functions. The aim of this paper is to develop a systematic framework for application of neural networks to motion feedforward, that leads to an intelligent motion feedforward approach in the sense that it achieves both flexibility for varying references and high performance. Iterative learning control is used to generate training data, and a control-relevant performance function is introduced. Non-causal feedforward is enabled through two network configurations that enable respectively finite and infinite preview. The approach is experimentally validated on an industrial flatbed printer.","PeriodicalId":373423,"journal":{"name":"2021 IEEE International Conference on Mechatronics (ICM)","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Control- Relevant Neural Networks for Intelligent Motion Feedforward\",\"authors\":\"Leontine Aarnoudse, W. Ohnishi, Maurice Poot, Paul Tacx, Nard Strijbosch, T. Oomen\",\"doi\":\"10.1109/ICM46511.2021.9385690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks have large potential for motion feedforward because of their ability to approximate a wide range of functions. The aim of this paper is to develop a systematic framework for application of neural networks to motion feedforward, that leads to an intelligent motion feedforward approach in the sense that it achieves both flexibility for varying references and high performance. Iterative learning control is used to generate training data, and a control-relevant performance function is introduced. Non-causal feedforward is enabled through two network configurations that enable respectively finite and infinite preview. The approach is experimentally validated on an industrial flatbed printer.\",\"PeriodicalId\":373423,\"journal\":{\"name\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Mechatronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM46511.2021.9385690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Mechatronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM46511.2021.9385690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

神经网络在运动前馈方面具有很大的潜力,因为它们能够近似广泛的函数。本文的目的是为神经网络在运动前馈中的应用开发一个系统的框架,从而实现一种智能的运动前馈方法,既能实现对不同参考的灵活性,又能实现高性能。采用迭代学习控制生成训练数据,并引入与控制相关的性能函数。非因果前馈通过两种网络配置实现,分别实现有限和无限预览。该方法在一台工业平板打印机上进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Control- Relevant Neural Networks for Intelligent Motion Feedforward
Neural networks have large potential for motion feedforward because of their ability to approximate a wide range of functions. The aim of this paper is to develop a systematic framework for application of neural networks to motion feedforward, that leads to an intelligent motion feedforward approach in the sense that it achieves both flexibility for varying references and high performance. Iterative learning control is used to generate training data, and a control-relevant performance function is introduced. Non-causal feedforward is enabled through two network configurations that enable respectively finite and infinite preview. The approach is experimentally validated on an industrial flatbed printer.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信