透射电子显微镜SAED图像的模式检测

S. Nebaba, D. Zavyalov, A. Pak
{"title":"透射电子显微镜SAED图像的模式检测","authors":"S. Nebaba, D. Zavyalov, A. Pak","doi":"10.51130/graphicon-2020-2-3-63","DOIUrl":null,"url":null,"abstract":"Specialized software that supports existing approaches to processing images of the crystal structure of materials for analyzing transmission electron microscopy images have a lot of different digital image processing methods, but major part of it are weakly automated. Automatic algorithm is able to make the crystal structure analysis more fast and effective process. The paper considers the problem of automated processing of SAED images of transmission electron microscopy. Proposed automated image processing algorithm based on methods of adaptive binarization and Watershed segmentation allows one to determine the distances on the diffraction pattern of a material sample on the image of transmission electron microscopy. The proposed algorithm has been tested on several SAED images, distances were calculated in automatic mode and compared with the results of semi-automatic measurement in Digital Micrograph GMS 1.8 software. The analysis of the results showed high agreement in considered cases, which let us assume that proposed algorithm has good development prospects.","PeriodicalId":344054,"journal":{"name":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Patterns Detection in SAED Images of Transmission Electron Microscopy\",\"authors\":\"S. Nebaba, D. Zavyalov, A. Pak\",\"doi\":\"10.51130/graphicon-2020-2-3-63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Specialized software that supports existing approaches to processing images of the crystal structure of materials for analyzing transmission electron microscopy images have a lot of different digital image processing methods, but major part of it are weakly automated. Automatic algorithm is able to make the crystal structure analysis more fast and effective process. The paper considers the problem of automated processing of SAED images of transmission electron microscopy. Proposed automated image processing algorithm based on methods of adaptive binarization and Watershed segmentation allows one to determine the distances on the diffraction pattern of a material sample on the image of transmission electron microscopy. The proposed algorithm has been tested on several SAED images, distances were calculated in automatic mode and compared with the results of semi-automatic measurement in Digital Micrograph GMS 1.8 software. The analysis of the results showed high agreement in considered cases, which let us assume that proposed algorithm has good development prospects.\",\"PeriodicalId\":344054,\"journal\":{\"name\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51130/graphicon-2020-2-3-63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Part 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51130/graphicon-2020-2-3-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

专门的软件支持现有的方法来处理材料的晶体结构图像,以分析透射电子显微镜图像,有很多不同的数字图像处理方法,但主要部分是弱自动化。自动算法能够使晶体结构分析过程更加快速有效。研究了透射电子显微镜SAED图像的自动处理问题。提出了一种基于自适应二值化和分水岭分割方法的自动图像处理算法,可以在透射电子显微镜图像上确定材料样品衍射图样上的距离。在多幅SAED图像上进行了实验,在自动模式下计算了距离,并与Digital Micrograph GMS 1.8软件中的半自动测量结果进行了比较。分析结果表明,在考虑的情况下,结果的一致性很高,可以假设所提出的算法具有良好的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patterns Detection in SAED Images of Transmission Electron Microscopy
Specialized software that supports existing approaches to processing images of the crystal structure of materials for analyzing transmission electron microscopy images have a lot of different digital image processing methods, but major part of it are weakly automated. Automatic algorithm is able to make the crystal structure analysis more fast and effective process. The paper considers the problem of automated processing of SAED images of transmission electron microscopy. Proposed automated image processing algorithm based on methods of adaptive binarization and Watershed segmentation allows one to determine the distances on the diffraction pattern of a material sample on the image of transmission electron microscopy. The proposed algorithm has been tested on several SAED images, distances were calculated in automatic mode and compared with the results of semi-automatic measurement in Digital Micrograph GMS 1.8 software. The analysis of the results showed high agreement in considered cases, which let us assume that proposed algorithm has good development prospects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信