低温张量处理装置设计-技术协同优化

D. Kang, Shimeng Yu
{"title":"低温张量处理装置设计-技术协同优化","authors":"D. Kang, Shimeng Yu","doi":"10.1109/APCCAS55924.2022.10090326","DOIUrl":null,"url":null,"abstract":"The cryogenic silicon complementary-metal-oxide-semiconductor (CMOS) technology and its application in tensor processing unit (TPU) design are explored. Using the 22 nm fully-depleted-silicon-on-insulator (FDSOI) transistor model that was calibrated at 70 K, this study provides insights into the design/technological knobs to achieve a superior performance at cryogenic temperature (cryo-TPU) by exploiting threshold voltage (Vth) engineering, gain-cell embedded DRAM (GC-eDRAM) and true-single phase clock (TSPC) D flip-flop. Benchmark shows that cryo-TPU using GC-eDRAM based global buffer and TSPC D flip-flop based register surpasses conventional TPU architecture operating at the room temperature: over 33% chip area reduction in iso-power condition, over 94% power reduction in iso-area condition and over 40% power reduction even when the refrigerator cooling power is included.","PeriodicalId":243739,"journal":{"name":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Design-Technology Co-optimization for Cryogenic Tensor Processing Unit\",\"authors\":\"D. Kang, Shimeng Yu\",\"doi\":\"10.1109/APCCAS55924.2022.10090326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cryogenic silicon complementary-metal-oxide-semiconductor (CMOS) technology and its application in tensor processing unit (TPU) design are explored. Using the 22 nm fully-depleted-silicon-on-insulator (FDSOI) transistor model that was calibrated at 70 K, this study provides insights into the design/technological knobs to achieve a superior performance at cryogenic temperature (cryo-TPU) by exploiting threshold voltage (Vth) engineering, gain-cell embedded DRAM (GC-eDRAM) and true-single phase clock (TSPC) D flip-flop. Benchmark shows that cryo-TPU using GC-eDRAM based global buffer and TSPC D flip-flop based register surpasses conventional TPU architecture operating at the room temperature: over 33% chip area reduction in iso-power condition, over 94% power reduction in iso-area condition and over 40% power reduction even when the refrigerator cooling power is included.\",\"PeriodicalId\":243739,\"journal\":{\"name\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS55924.2022.10090326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS55924.2022.10090326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

探讨了低温硅互补金属氧化物半导体(CMOS)技术及其在张量处理单元(TPU)设计中的应用。本研究使用在70 K下校准的22 nm全耗尽绝缘体上硅(FDSOI)晶体管模型,通过利用阈值电压(Vth)工程、增益单元嵌入式DRAM (GC-eDRAM)和真单相时钟(TSPC) D触发器,提供了设计/技术方面的洞见,以实现在低温(cro - tpu)下的卓越性能。基准测试表明,使用基于GC-eDRAM的全局缓冲器和基于TSPC D触发器的寄存器的低温TPU优于在室温下工作的传统TPU架构:在等功耗条件下,芯片面积减少33%以上,在等功耗条件下,功耗降低94%以上,即使包括冰箱冷却功率,功耗也降低40%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design-Technology Co-optimization for Cryogenic Tensor Processing Unit
The cryogenic silicon complementary-metal-oxide-semiconductor (CMOS) technology and its application in tensor processing unit (TPU) design are explored. Using the 22 nm fully-depleted-silicon-on-insulator (FDSOI) transistor model that was calibrated at 70 K, this study provides insights into the design/technological knobs to achieve a superior performance at cryogenic temperature (cryo-TPU) by exploiting threshold voltage (Vth) engineering, gain-cell embedded DRAM (GC-eDRAM) and true-single phase clock (TSPC) D flip-flop. Benchmark shows that cryo-TPU using GC-eDRAM based global buffer and TSPC D flip-flop based register surpasses conventional TPU architecture operating at the room temperature: over 33% chip area reduction in iso-power condition, over 94% power reduction in iso-area condition and over 40% power reduction even when the refrigerator cooling power is included.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信