{"title":"热等离子体自由电子激光的线性理论","authors":"L. Wenxin, Yang Ziqiang, Liang Zheng","doi":"10.1109/IVESC.2004.1414288","DOIUrl":null,"url":null,"abstract":"The dispersion equation of thermal plasma-loaded FEL is derived employing linear fluid theory. The characteristic of this thermal plasma FEL is analyzed in detail. FEL growth rate varying with plasma density and plasma temperature is investigated. We find there is an optimum plasma temperature where FEL growth rate can be enhanced considerably. The FEL growth rate is decreased accompanying plasma density rising.","PeriodicalId":340787,"journal":{"name":"IVESC 2004. The 5th International Vacuum Electron Sources Conference Proceedings (IEEE Cat. No.04EX839)","volume":"376 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The linear theory of thermal plasma free-electron laser\",\"authors\":\"L. Wenxin, Yang Ziqiang, Liang Zheng\",\"doi\":\"10.1109/IVESC.2004.1414288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dispersion equation of thermal plasma-loaded FEL is derived employing linear fluid theory. The characteristic of this thermal plasma FEL is analyzed in detail. FEL growth rate varying with plasma density and plasma temperature is investigated. We find there is an optimum plasma temperature where FEL growth rate can be enhanced considerably. The FEL growth rate is decreased accompanying plasma density rising.\",\"PeriodicalId\":340787,\"journal\":{\"name\":\"IVESC 2004. The 5th International Vacuum Electron Sources Conference Proceedings (IEEE Cat. No.04EX839)\",\"volume\":\"376 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IVESC 2004. The 5th International Vacuum Electron Sources Conference Proceedings (IEEE Cat. No.04EX839)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVESC.2004.1414288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVESC 2004. The 5th International Vacuum Electron Sources Conference Proceedings (IEEE Cat. No.04EX839)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVESC.2004.1414288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The linear theory of thermal plasma free-electron laser
The dispersion equation of thermal plasma-loaded FEL is derived employing linear fluid theory. The characteristic of this thermal plasma FEL is analyzed in detail. FEL growth rate varying with plasma density and plasma temperature is investigated. We find there is an optimum plasma temperature where FEL growth rate can be enhanced considerably. The FEL growth rate is decreased accompanying plasma density rising.