Ching-Hsiang Hsu, Hsun-Jui Chang, H. Yu, Hong-Quan Nguyen, J. Ma, E. Chang
{"title":"无金铜金属化III-V型太阳能电池","authors":"Ching-Hsiang Hsu, Hsun-Jui Chang, H. Yu, Hong-Quan Nguyen, J. Ma, E. Chang","doi":"10.1109/SMELEC.2014.6920866","DOIUrl":null,"url":null,"abstract":"Au-free, fully Cu-metallized InGaP/InGaAs/Ge triple-junction solar cells using Pd/Ge/Cu as front contact and Pt/Ti/Pt/Cu/Cr as back contact were fabricated and the results are reported for the first time. From the specific contact resistance measurement, these Cu-metallized ohmic contacts have low contact resistance in the order of 10-6 Ω-cm2. AES and TEM results clearly show the formation mechanisms of the Cu-metallization ohmic structures, for Pd/Ge/Cu contact, it was due to the formation of Ge diffusion into the GaAs layer, and for the Pt/Ti/Pt/Cu/Cr contact, it was due to high work function of Pt layer, these copper metallized ohmic contacts were quite stable even after 310 °C annealing. The I-V curves of the Cu-metallized InGaP/InGaAs/Ge triple-junction solar cells showed similar electrical characteristics to the solar cells with Au-metallized triple junction solar cell. Overall, the Pd/Ge/Cu and Pt/Ti/Pt/Cu ohmic contacts have been successfully applied to the InGaP/InGaAs/Ge triple-junction solar cells and demonstrated excellent performance.","PeriodicalId":268203,"journal":{"name":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gold-free Cu-metallized III-V solar cell\",\"authors\":\"Ching-Hsiang Hsu, Hsun-Jui Chang, H. Yu, Hong-Quan Nguyen, J. Ma, E. Chang\",\"doi\":\"10.1109/SMELEC.2014.6920866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Au-free, fully Cu-metallized InGaP/InGaAs/Ge triple-junction solar cells using Pd/Ge/Cu as front contact and Pt/Ti/Pt/Cu/Cr as back contact were fabricated and the results are reported for the first time. From the specific contact resistance measurement, these Cu-metallized ohmic contacts have low contact resistance in the order of 10-6 Ω-cm2. AES and TEM results clearly show the formation mechanisms of the Cu-metallization ohmic structures, for Pd/Ge/Cu contact, it was due to the formation of Ge diffusion into the GaAs layer, and for the Pt/Ti/Pt/Cu/Cr contact, it was due to high work function of Pt layer, these copper metallized ohmic contacts were quite stable even after 310 °C annealing. The I-V curves of the Cu-metallized InGaP/InGaAs/Ge triple-junction solar cells showed similar electrical characteristics to the solar cells with Au-metallized triple junction solar cell. Overall, the Pd/Ge/Cu and Pt/Ti/Pt/Cu ohmic contacts have been successfully applied to the InGaP/InGaAs/Ge triple-junction solar cells and demonstrated excellent performance.\",\"PeriodicalId\":268203,\"journal\":{\"name\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMELEC.2014.6920866\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Semiconductor Electronics (ICSE2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2014.6920866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Au-free, fully Cu-metallized InGaP/InGaAs/Ge triple-junction solar cells using Pd/Ge/Cu as front contact and Pt/Ti/Pt/Cu/Cr as back contact were fabricated and the results are reported for the first time. From the specific contact resistance measurement, these Cu-metallized ohmic contacts have low contact resistance in the order of 10-6 Ω-cm2. AES and TEM results clearly show the formation mechanisms of the Cu-metallization ohmic structures, for Pd/Ge/Cu contact, it was due to the formation of Ge diffusion into the GaAs layer, and for the Pt/Ti/Pt/Cu/Cr contact, it was due to high work function of Pt layer, these copper metallized ohmic contacts were quite stable even after 310 °C annealing. The I-V curves of the Cu-metallized InGaP/InGaAs/Ge triple-junction solar cells showed similar electrical characteristics to the solar cells with Au-metallized triple junction solar cell. Overall, the Pd/Ge/Cu and Pt/Ti/Pt/Cu ohmic contacts have been successfully applied to the InGaP/InGaAs/Ge triple-junction solar cells and demonstrated excellent performance.