克里斯托:通过众包信息图式支持意义生成

Haeyong Chung, Sai Prashanth Dasari, Santhosh Nandhakumar, Christopher Andrews
{"title":"克里斯托:通过众包信息图式支持意义生成","authors":"Haeyong Chung, Sai Prashanth Dasari, Santhosh Nandhakumar, Christopher Andrews","doi":"10.1109/VAST.2017.8585484","DOIUrl":null,"url":null,"abstract":"We present CRICTO, a new crowdsourcing visual analytics environment for making sense of and analyzing text data, whereby multiple crowdworkers are able to parallelize the simple information schematization tasks of relating and connecting entities across documents. The diverse links from these schematization tasks are then automatically combined and the system visualizes them based on the semantic types of the linkages. CRICTO also includes several tools that allow analysts to interactively explore and refine crowdworkers’ results to better support their own sensemaking processes. We evaluated CRICTO’s techniques and analysis workflow with deployments of CRICTO using Amazon Mechanical Turk and a user study that assess the effect of crowdsourced schematization in sensemaking tasks. The results of our evaluation show that CRICTO’s crowdsourcing approaches and workflow help analysts explore diverse aspects of datasets, and uncover more accurate hidden stories embedded in the text datasets.","PeriodicalId":149607,"journal":{"name":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CRICTO: Supporting Sensemaking through Crowdsourced Information Schematization\",\"authors\":\"Haeyong Chung, Sai Prashanth Dasari, Santhosh Nandhakumar, Christopher Andrews\",\"doi\":\"10.1109/VAST.2017.8585484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present CRICTO, a new crowdsourcing visual analytics environment for making sense of and analyzing text data, whereby multiple crowdworkers are able to parallelize the simple information schematization tasks of relating and connecting entities across documents. The diverse links from these schematization tasks are then automatically combined and the system visualizes them based on the semantic types of the linkages. CRICTO also includes several tools that allow analysts to interactively explore and refine crowdworkers’ results to better support their own sensemaking processes. We evaluated CRICTO’s techniques and analysis workflow with deployments of CRICTO using Amazon Mechanical Turk and a user study that assess the effect of crowdsourced schematization in sensemaking tasks. The results of our evaluation show that CRICTO’s crowdsourcing approaches and workflow help analysts explore diverse aspects of datasets, and uncover more accurate hidden stories embedded in the text datasets.\",\"PeriodicalId\":149607,\"journal\":{\"name\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2017.8585484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2017.8585484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了CRICTO,这是一个新的众包可视化分析环境,用于理解和分析文本数据,多个众包工作者能够并行化跨文档关联和连接实体的简单信息图式任务。然后,来自这些图式任务的不同链接被自动组合,系统根据链接的语义类型对它们进行可视化。CRICTO还包括一些工具,使分析师能够交互式地探索和完善众包工作者的结果,以更好地支持他们自己的意义构建过程。我们评估了CRICTO的技术和分析工作流程,并使用Amazon Mechanical Turk部署了CRICTO,并进行了一项用户研究,评估了众包图式在语义生成任务中的影响。我们的评估结果表明,CRICTO的众包方法和工作流程有助于分析人员探索数据集的各个方面,并发现嵌入在文本数据集中的更准确的隐藏故事。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CRICTO: Supporting Sensemaking through Crowdsourced Information Schematization
We present CRICTO, a new crowdsourcing visual analytics environment for making sense of and analyzing text data, whereby multiple crowdworkers are able to parallelize the simple information schematization tasks of relating and connecting entities across documents. The diverse links from these schematization tasks are then automatically combined and the system visualizes them based on the semantic types of the linkages. CRICTO also includes several tools that allow analysts to interactively explore and refine crowdworkers’ results to better support their own sensemaking processes. We evaluated CRICTO’s techniques and analysis workflow with deployments of CRICTO using Amazon Mechanical Turk and a user study that assess the effect of crowdsourced schematization in sensemaking tasks. The results of our evaluation show that CRICTO’s crowdsourcing approaches and workflow help analysts explore diverse aspects of datasets, and uncover more accurate hidden stories embedded in the text datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信