有机太阳能电池的建模与仿真

Liming Liu, Guangyong Li
{"title":"有机太阳能电池的建模与仿真","authors":"Liming Liu, Guangyong Li","doi":"10.1109/NMDC.2010.5649633","DOIUrl":null,"url":null,"abstract":"We present our investigation of organic solar cells by modeling and simulation after numerically solving Poisson and continuity equations that describe the electric property of semiconductors. Specifically, simulations reveal that Langevin type recombination, which describes the loss mechanism in pristine materials with low mobility, is not proper to predict the performance of BHJ organic solar cells and will lead counterintuitive simulation results. Then, the recombination mechanism has been studied in bulk heterojunction (BHJ) organic solar cells by simulating intensity-dependent current-voltage (J-V) measurements. The simulation results indicate that primary loss mechanism is monomolecular recombination. Moreover, the unbalanced carrier transport in organic solar cells is explored and the simulation suggests that increasing hole mobility is an effective method to improve the performance of organic solar cells.","PeriodicalId":423557,"journal":{"name":"2010 IEEE Nanotechnology Materials and Devices Conference","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Modeling and simulation of organic solar cells\",\"authors\":\"Liming Liu, Guangyong Li\",\"doi\":\"10.1109/NMDC.2010.5649633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our investigation of organic solar cells by modeling and simulation after numerically solving Poisson and continuity equations that describe the electric property of semiconductors. Specifically, simulations reveal that Langevin type recombination, which describes the loss mechanism in pristine materials with low mobility, is not proper to predict the performance of BHJ organic solar cells and will lead counterintuitive simulation results. Then, the recombination mechanism has been studied in bulk heterojunction (BHJ) organic solar cells by simulating intensity-dependent current-voltage (J-V) measurements. The simulation results indicate that primary loss mechanism is monomolecular recombination. Moreover, the unbalanced carrier transport in organic solar cells is explored and the simulation suggests that increasing hole mobility is an effective method to improve the performance of organic solar cells.\",\"PeriodicalId\":423557,\"journal\":{\"name\":\"2010 IEEE Nanotechnology Materials and Devices Conference\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Nanotechnology Materials and Devices Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NMDC.2010.5649633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Nanotechnology Materials and Devices Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC.2010.5649633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

我们通过数值求解描述半导体电性能的泊松方程和连续性方程,对有机太阳能电池进行了建模和仿真研究。具体来说,模拟结果表明,描述低迁移率原始材料损耗机制的Langevin型复合并不适合预测BHJ有机太阳能电池的性能,并且会导致反直觉的模拟结果。然后,通过模拟强度相关的电流-电压(J-V)测量,研究了块状异质结(BHJ)有机太阳能电池中的复合机理。模拟结果表明,单分子重组是主要的损失机制。此外,对有机太阳能电池中载流子的不平衡输运进行了研究,仿真结果表明,提高空穴迁移率是提高有机太阳能电池性能的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling and simulation of organic solar cells
We present our investigation of organic solar cells by modeling and simulation after numerically solving Poisson and continuity equations that describe the electric property of semiconductors. Specifically, simulations reveal that Langevin type recombination, which describes the loss mechanism in pristine materials with low mobility, is not proper to predict the performance of BHJ organic solar cells and will lead counterintuitive simulation results. Then, the recombination mechanism has been studied in bulk heterojunction (BHJ) organic solar cells by simulating intensity-dependent current-voltage (J-V) measurements. The simulation results indicate that primary loss mechanism is monomolecular recombination. Moreover, the unbalanced carrier transport in organic solar cells is explored and the simulation suggests that increasing hole mobility is an effective method to improve the performance of organic solar cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信