基于rnn的阿萨姆语语音识别多特征提取,用于语音到文本的转换

K. Dutta, K. K. Sarma
{"title":"基于rnn的阿萨姆语语音识别多特征提取,用于语音到文本的转换","authors":"K. Dutta, K. K. Sarma","doi":"10.1109/CODIS.2012.6422274","DOIUrl":null,"url":null,"abstract":"The current work proposes a prototype model for speech recognition in Assamese language using Linear Predictive Coding (LPC) and Mel frequency cepstral coefficient (MFCC). The speech recognition is a part of a speech to text conversion system. The LPC and MFCC features are extracted by two different Recurrent Neural Networks (RNN), which are used to recognize the vocal extract of Assamese language- a major language in the North Eastern part of India. In this work, decision block is designed by a combined framework of RNN block to extract the features. Using this combined architecture our system is able to generate 10% gain in the recognition rate than the case when individual architectures are used.","PeriodicalId":274831,"journal":{"name":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Multiple feature extraction for RNN-based Assamese speech recognition for speech to text conversion application\",\"authors\":\"K. Dutta, K. K. Sarma\",\"doi\":\"10.1109/CODIS.2012.6422274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work proposes a prototype model for speech recognition in Assamese language using Linear Predictive Coding (LPC) and Mel frequency cepstral coefficient (MFCC). The speech recognition is a part of a speech to text conversion system. The LPC and MFCC features are extracted by two different Recurrent Neural Networks (RNN), which are used to recognize the vocal extract of Assamese language- a major language in the North Eastern part of India. In this work, decision block is designed by a combined framework of RNN block to extract the features. Using this combined architecture our system is able to generate 10% gain in the recognition rate than the case when individual architectures are used.\",\"PeriodicalId\":274831,\"journal\":{\"name\":\"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CODIS.2012.6422274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODIS.2012.6422274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

目前的工作提出了一个使用线性预测编码(LPC)和Mel频率倒谱系数(MFCC)的阿萨姆语语音识别原型模型。语音识别是语音到文本转换系统的一部分。LPC和MFCC特征由两种不同的递归神经网络(RNN)提取,用于识别印度东北部主要语言阿萨姆语的语音提取。在这项工作中,采用RNN块的组合框架设计决策块来提取特征。使用这种组合体系结构,我们的系统能够比使用单个体系结构的情况下产生10%的识别率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiple feature extraction for RNN-based Assamese speech recognition for speech to text conversion application
The current work proposes a prototype model for speech recognition in Assamese language using Linear Predictive Coding (LPC) and Mel frequency cepstral coefficient (MFCC). The speech recognition is a part of a speech to text conversion system. The LPC and MFCC features are extracted by two different Recurrent Neural Networks (RNN), which are used to recognize the vocal extract of Assamese language- a major language in the North Eastern part of India. In this work, decision block is designed by a combined framework of RNN block to extract the features. Using this combined architecture our system is able to generate 10% gain in the recognition rate than the case when individual architectures are used.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信