{"title":"基于rnn的阿萨姆语语音识别多特征提取,用于语音到文本的转换","authors":"K. Dutta, K. K. Sarma","doi":"10.1109/CODIS.2012.6422274","DOIUrl":null,"url":null,"abstract":"The current work proposes a prototype model for speech recognition in Assamese language using Linear Predictive Coding (LPC) and Mel frequency cepstral coefficient (MFCC). The speech recognition is a part of a speech to text conversion system. The LPC and MFCC features are extracted by two different Recurrent Neural Networks (RNN), which are used to recognize the vocal extract of Assamese language- a major language in the North Eastern part of India. In this work, decision block is designed by a combined framework of RNN block to extract the features. Using this combined architecture our system is able to generate 10% gain in the recognition rate than the case when individual architectures are used.","PeriodicalId":274831,"journal":{"name":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Multiple feature extraction for RNN-based Assamese speech recognition for speech to text conversion application\",\"authors\":\"K. Dutta, K. K. Sarma\",\"doi\":\"10.1109/CODIS.2012.6422274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current work proposes a prototype model for speech recognition in Assamese language using Linear Predictive Coding (LPC) and Mel frequency cepstral coefficient (MFCC). The speech recognition is a part of a speech to text conversion system. The LPC and MFCC features are extracted by two different Recurrent Neural Networks (RNN), which are used to recognize the vocal extract of Assamese language- a major language in the North Eastern part of India. In this work, decision block is designed by a combined framework of RNN block to extract the features. Using this combined architecture our system is able to generate 10% gain in the recognition rate than the case when individual architectures are used.\",\"PeriodicalId\":274831,\"journal\":{\"name\":\"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CODIS.2012.6422274\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communications, Devices and Intelligent Systems (CODIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODIS.2012.6422274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple feature extraction for RNN-based Assamese speech recognition for speech to text conversion application
The current work proposes a prototype model for speech recognition in Assamese language using Linear Predictive Coding (LPC) and Mel frequency cepstral coefficient (MFCC). The speech recognition is a part of a speech to text conversion system. The LPC and MFCC features are extracted by two different Recurrent Neural Networks (RNN), which are used to recognize the vocal extract of Assamese language- a major language in the North Eastern part of India. In this work, decision block is designed by a combined framework of RNN block to extract the features. Using this combined architecture our system is able to generate 10% gain in the recognition rate than the case when individual architectures are used.