基于词典的Facebook粉丝页面排名情感分析

Phan Trong Ngoc, Myungsik Yoo
{"title":"基于词典的Facebook粉丝页面排名情感分析","authors":"Phan Trong Ngoc, Myungsik Yoo","doi":"10.1109/ICOIN.2014.6799721","DOIUrl":null,"url":null,"abstract":"The traditional methods to rank a Facebook fan page only rely on the user engagement including the number of posts, comments, and “likes”. The polarity of each comment, which can be positive, neutral, or negative, is ignored in these methods. In this paper, we propose a content-based ranking method in which the user engagement and the comment polarity are all considered. The user comment is analyzed using a lexicon-based approach. We apply the proposed method for the real Facebook dataset collected using the Social Packets crawler. The result shows that the ranks of pages estimated by our method is close to the ranks estimated by engagement based method. More importantly, by concerning the comment polarity, our page ranking is more accurate regarding user opinion.","PeriodicalId":388486,"journal":{"name":"The International Conference on Information Networking 2014 (ICOIN2014)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"The lexicon-based sentiment analysis for fan page ranking in Facebook\",\"authors\":\"Phan Trong Ngoc, Myungsik Yoo\",\"doi\":\"10.1109/ICOIN.2014.6799721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional methods to rank a Facebook fan page only rely on the user engagement including the number of posts, comments, and “likes”. The polarity of each comment, which can be positive, neutral, or negative, is ignored in these methods. In this paper, we propose a content-based ranking method in which the user engagement and the comment polarity are all considered. The user comment is analyzed using a lexicon-based approach. We apply the proposed method for the real Facebook dataset collected using the Social Packets crawler. The result shows that the ranks of pages estimated by our method is close to the ranks estimated by engagement based method. More importantly, by concerning the comment polarity, our page ranking is more accurate regarding user opinion.\",\"PeriodicalId\":388486,\"journal\":{\"name\":\"The International Conference on Information Networking 2014 (ICOIN2014)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Conference on Information Networking 2014 (ICOIN2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOIN.2014.6799721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on Information Networking 2014 (ICOIN2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOIN.2014.6799721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

对Facebook粉丝页面进行排名的传统方法只依赖于用户参与度,包括帖子、评论和“喜欢”的数量。在这些方法中,每个注释的极性(可以是积极的、中性的或消极的)被忽略。在本文中,我们提出了一种基于内容的排名方法,其中考虑了用户参与度和评论极性。使用基于词典的方法分析用户评论。我们将提出的方法应用于使用社交数据包爬虫收集的真实Facebook数据集。结果表明,该方法估计的页面排名与基于参与度的方法估计的页面排名接近。更重要的是,通过关注评论极性,我们的页面排名更准确地反映了用户的意见。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The lexicon-based sentiment analysis for fan page ranking in Facebook
The traditional methods to rank a Facebook fan page only rely on the user engagement including the number of posts, comments, and “likes”. The polarity of each comment, which can be positive, neutral, or negative, is ignored in these methods. In this paper, we propose a content-based ranking method in which the user engagement and the comment polarity are all considered. The user comment is analyzed using a lexicon-based approach. We apply the proposed method for the real Facebook dataset collected using the Social Packets crawler. The result shows that the ranks of pages estimated by our method is close to the ranks estimated by engagement based method. More importantly, by concerning the comment polarity, our page ranking is more accurate regarding user opinion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信