Mattana Santasnachok, E. Sutheerasak, Charoen Chinwanitcharoen, Wirogana Ruengphrathuengsuka
{"title":"从藻类生物质气化衍生合成气生产甲醇:建模研究","authors":"Mattana Santasnachok, E. Sutheerasak, Charoen Chinwanitcharoen, Wirogana Ruengphrathuengsuka","doi":"10.12720/SGCE.9.5.865-871","DOIUrl":null,"url":null,"abstract":"Methanol is known as an alternative energy for transportation fuels and precursors in many industrial processes. Conventionally, coal and methane are used as feedstock for methanol synthesis but its combustion generates CO2 emission, one of the main sources of global warming. The purpose of this study is to analyze through an analytical model the methanol production from algae biomass gasification from air-steam biomass gasification process. The model aims to investigate: 1) the influences of the gasifier temperature and gasifying agent on syngas production and 2) the operating conditions for methanol production. The results show that higher gasifier temperature and steam to algae ratio increased the syngas yield. The gasifier temperature and steam to algae ratio of 800°C and 0.5 respectively result in the maximum yield of syngas. In the methanol analysis, the operation at high pressure and low temperature enhances the methanol production. The temperature and pressure of 200°C and 80 bar respectively result in the maximum yield of methanol (76.56%).","PeriodicalId":247617,"journal":{"name":"International Journal of Smart Grid and Clean Energy","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methanol production from algae biomass gasification derived syngas: A modeling study\",\"authors\":\"Mattana Santasnachok, E. Sutheerasak, Charoen Chinwanitcharoen, Wirogana Ruengphrathuengsuka\",\"doi\":\"10.12720/SGCE.9.5.865-871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methanol is known as an alternative energy for transportation fuels and precursors in many industrial processes. Conventionally, coal and methane are used as feedstock for methanol synthesis but its combustion generates CO2 emission, one of the main sources of global warming. The purpose of this study is to analyze through an analytical model the methanol production from algae biomass gasification from air-steam biomass gasification process. The model aims to investigate: 1) the influences of the gasifier temperature and gasifying agent on syngas production and 2) the operating conditions for methanol production. The results show that higher gasifier temperature and steam to algae ratio increased the syngas yield. The gasifier temperature and steam to algae ratio of 800°C and 0.5 respectively result in the maximum yield of syngas. In the methanol analysis, the operation at high pressure and low temperature enhances the methanol production. The temperature and pressure of 200°C and 80 bar respectively result in the maximum yield of methanol (76.56%).\",\"PeriodicalId\":247617,\"journal\":{\"name\":\"International Journal of Smart Grid and Clean Energy\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Smart Grid and Clean Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12720/SGCE.9.5.865-871\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Smart Grid and Clean Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12720/SGCE.9.5.865-871","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Methanol production from algae biomass gasification derived syngas: A modeling study
Methanol is known as an alternative energy for transportation fuels and precursors in many industrial processes. Conventionally, coal and methane are used as feedstock for methanol synthesis but its combustion generates CO2 emission, one of the main sources of global warming. The purpose of this study is to analyze through an analytical model the methanol production from algae biomass gasification from air-steam biomass gasification process. The model aims to investigate: 1) the influences of the gasifier temperature and gasifying agent on syngas production and 2) the operating conditions for methanol production. The results show that higher gasifier temperature and steam to algae ratio increased the syngas yield. The gasifier temperature and steam to algae ratio of 800°C and 0.5 respectively result in the maximum yield of syngas. In the methanol analysis, the operation at high pressure and low temperature enhances the methanol production. The temperature and pressure of 200°C and 80 bar respectively result in the maximum yield of methanol (76.56%).