半定优化的一种新的原对偶内点算法

Yong-Hoon Lee, Jin-Hee Jin, G. Cho
{"title":"半定优化的一种新的原对偶内点算法","authors":"Yong-Hoon Lee, Jin-Hee Jin, G. Cho","doi":"10.1109/ICISA.2014.6847334","DOIUrl":null,"url":null,"abstract":"We propose a new primal-dual interior-point algorithm for semidefinite optimization(SDO) based on an eligible barrier function. New search directions and proximity measures are proposed based on the barrier function. We show that the algorithm has O(√n log(n/ε)) and O(√n(log n)log(n/ε)) complexity results for small- and large-update methods, respectively. These are the best known complexity results for such methods.","PeriodicalId":117185,"journal":{"name":"2014 International Conference on Information Science & Applications (ICISA)","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Primal-Dual Interior-Point Algorithm for Semidefinite Optimization\",\"authors\":\"Yong-Hoon Lee, Jin-Hee Jin, G. Cho\",\"doi\":\"10.1109/ICISA.2014.6847334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new primal-dual interior-point algorithm for semidefinite optimization(SDO) based on an eligible barrier function. New search directions and proximity measures are proposed based on the barrier function. We show that the algorithm has O(√n log(n/ε)) and O(√n(log n)log(n/ε)) complexity results for small- and large-update methods, respectively. These are the best known complexity results for such methods.\",\"PeriodicalId\":117185,\"journal\":{\"name\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Information Science & Applications (ICISA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICISA.2014.6847334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Information Science & Applications (ICISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISA.2014.6847334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的基于合适的障碍函数的半定优化(SDO)的原对偶内点算法。提出了基于障碍函数的新的搜索方向和接近度量。我们证明了该算法对于小更新和大更新方法分别具有O(√n log(n/ε))和O(√n(log n)log(n/ε))复杂度结果。这些是此类方法最著名的复杂性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Primal-Dual Interior-Point Algorithm for Semidefinite Optimization
We propose a new primal-dual interior-point algorithm for semidefinite optimization(SDO) based on an eligible barrier function. New search directions and proximity measures are proposed based on the barrier function. We show that the algorithm has O(√n log(n/ε)) and O(√n(log n)log(n/ε)) complexity results for small- and large-update methods, respectively. These are the best known complexity results for such methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信