RGB-D SLAM的近似曲面重建与配准

D. Holz, Sven Behnke
{"title":"RGB-D SLAM的近似曲面重建与配准","authors":"D. Holz, Sven Behnke","doi":"10.1109/ECMR.2015.7324182","DOIUrl":null,"url":null,"abstract":"RGB-D cameras have attracted much attention in the fields of robotics and computer vision, especially for object modeling and environment mapping. A key problem in all these applications is the registration of sequences of RGB-D images. In this paper, we present an efficient yet reliable approach to align pairs and sequences of RGB-D images that makes use of local surface information. We extend previous works on 3D mapping with micro aerial vehicles to sequences of RGB-D images. The resulting alignment is based on a robust surface-to-surface error metric and uses multiple surface-to-surface patch matches between pairs of RGB-D images. Quantitative evaluations show that our approach is competitive with state-of-the-art approaches.","PeriodicalId":142754,"journal":{"name":"2015 European Conference on Mobile Robots (ECMR)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Approximate surface reconstruction and registration for RGB-D SLAM\",\"authors\":\"D. Holz, Sven Behnke\",\"doi\":\"10.1109/ECMR.2015.7324182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"RGB-D cameras have attracted much attention in the fields of robotics and computer vision, especially for object modeling and environment mapping. A key problem in all these applications is the registration of sequences of RGB-D images. In this paper, we present an efficient yet reliable approach to align pairs and sequences of RGB-D images that makes use of local surface information. We extend previous works on 3D mapping with micro aerial vehicles to sequences of RGB-D images. The resulting alignment is based on a robust surface-to-surface error metric and uses multiple surface-to-surface patch matches between pairs of RGB-D images. Quantitative evaluations show that our approach is competitive with state-of-the-art approaches.\",\"PeriodicalId\":142754,\"journal\":{\"name\":\"2015 European Conference on Mobile Robots (ECMR)\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 European Conference on Mobile Robots (ECMR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECMR.2015.7324182\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 European Conference on Mobile Robots (ECMR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECMR.2015.7324182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

RGB-D相机在机器人和计算机视觉领域,特别是在物体建模和环境映射方面受到了广泛的关注。所有这些应用中的一个关键问题是RGB-D图像序列的配准。在本文中,我们提出了一种有效而可靠的方法来对齐RGB-D图像对和序列,该方法利用了局部表面信息。我们将以前的工作扩展到微型飞行器的3D映射到RGB-D图像序列。由此产生的对齐基于一个鲁棒的地对地误差度量,并在RGB-D图像对之间使用多个地对地补丁匹配。定量评估表明,我们的方法与最先进的方法相比具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate surface reconstruction and registration for RGB-D SLAM
RGB-D cameras have attracted much attention in the fields of robotics and computer vision, especially for object modeling and environment mapping. A key problem in all these applications is the registration of sequences of RGB-D images. In this paper, we present an efficient yet reliable approach to align pairs and sequences of RGB-D images that makes use of local surface information. We extend previous works on 3D mapping with micro aerial vehicles to sequences of RGB-D images. The resulting alignment is based on a robust surface-to-surface error metric and uses multiple surface-to-surface patch matches between pairs of RGB-D images. Quantitative evaluations show that our approach is competitive with state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信