高次对称张量类的结构

R. Merris
{"title":"高次对称张量类的结构","authors":"R. Merris","doi":"10.6028/JRES.080B.026","DOIUrl":null,"url":null,"abstract":"The pape r is concerned with sy mm et ry c lasses of te nso rs whic h a ri se fro m a pe rmut ation gro up C a nd irred uc ible c ha racte r X of C . In case X is o f degree 1, a we ll-kno wn a lgo rith m is ava ilab le fo r induc ing a bas is of the sym me try c lass from the unde rl ying vecto r s pace. Whe n the degree of X is grea te r than 1, no com pa ra ble construc tion has been di scove red . The diffi c ulties are d isc ussed and result s obt a ined in some spec ia l cases.","PeriodicalId":166823,"journal":{"name":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","volume":"62 51","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1976-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The structure of higher degree symmetry classes of tensors\",\"authors\":\"R. Merris\",\"doi\":\"10.6028/JRES.080B.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pape r is concerned with sy mm et ry c lasses of te nso rs whic h a ri se fro m a pe rmut ation gro up C a nd irred uc ible c ha racte r X of C . In case X is o f degree 1, a we ll-kno wn a lgo rith m is ava ilab le fo r induc ing a bas is of the sym me try c lass from the unde rl ying vecto r s pace. Whe n the degree of X is grea te r than 1, no com pa ra ble construc tion has been di scove red . The diffi c ulties are d isc ussed and result s obt a ined in some spec ia l cases.\",\"PeriodicalId\":166823,\"journal\":{\"name\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"volume\":\"62 51\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1976-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.6028/JRES.080B.026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Research of the National Bureau of Standards, Section B: Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6028/JRES.080B.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文研究了由c和c的类型变化产生的c和c的类型变化引起的c和c的类型变化引起的c和c的类型变化引起的c和c的类型变化引起的c的类型变化。如果X是0的1次幂,那么我们知道一个带m的函数可以从下面的线性向量中引出一个系统的向量。当X的度数大于r > 1时,没有发现任何可行的结构。在某些特殊情况下,对困难进行了讨论,并对结果进行了确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The structure of higher degree symmetry classes of tensors
The pape r is concerned with sy mm et ry c lasses of te nso rs whic h a ri se fro m a pe rmut ation gro up C a nd irred uc ible c ha racte r X of C . In case X is o f degree 1, a we ll-kno wn a lgo rith m is ava ilab le fo r induc ing a bas is of the sym me try c lass from the unde rl ying vecto r s pace. Whe n the degree of X is grea te r than 1, no com pa ra ble construc tion has been di scove red . The diffi c ulties are d isc ussed and result s obt a ined in some spec ia l cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信