{"title":"多核架构的可配置工作负载生成器","authors":"Amayika Panda, A. Avakian, R. Vemuri","doi":"10.1109/SOCC.2011.6085077","DOIUrl":null,"url":null,"abstract":"Proposed multicore architectures are usually evaluated using two types of benchmarks: application and synthetic. Application benchmarks use well understood computations to generate well defined workloads. In contrast, synthetic benchmarks are tunable to generate a range of custom workloads. Both classes are currently limited. Existing application benchmarks are inflexible. And the options offered by synthetic benchmarks are too limited to generate a large variety of workload patterns. In this paper we propose novel workload generation methodologies that allow system developers to generate custom benchmarks for desired workload conditions for a variety of existing and multicore architectures. Specifically we describe two configurable workload generators, which we name ConWork and CompWork. ConWork is a configurable synthetic workload generator using which artificial traffic among the processors and memories can be generated. CompWork is a configurable computational workload generator, which can be used to specify vector and matrix applications so as to elicit the desired computational workloads among the processors. Together the two generators provide a number of options to generate workloads to evaluate a variety of performance metrics of existing and emerging multicore architectures including bus based SoCs, packet switching NoCs and hybrids.","PeriodicalId":365422,"journal":{"name":"2011 IEEE International SOC Conference","volume":"10878 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Configurable workload generators for multicore architectures\",\"authors\":\"Amayika Panda, A. Avakian, R. Vemuri\",\"doi\":\"10.1109/SOCC.2011.6085077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposed multicore architectures are usually evaluated using two types of benchmarks: application and synthetic. Application benchmarks use well understood computations to generate well defined workloads. In contrast, synthetic benchmarks are tunable to generate a range of custom workloads. Both classes are currently limited. Existing application benchmarks are inflexible. And the options offered by synthetic benchmarks are too limited to generate a large variety of workload patterns. In this paper we propose novel workload generation methodologies that allow system developers to generate custom benchmarks for desired workload conditions for a variety of existing and multicore architectures. Specifically we describe two configurable workload generators, which we name ConWork and CompWork. ConWork is a configurable synthetic workload generator using which artificial traffic among the processors and memories can be generated. CompWork is a configurable computational workload generator, which can be used to specify vector and matrix applications so as to elicit the desired computational workloads among the processors. Together the two generators provide a number of options to generate workloads to evaluate a variety of performance metrics of existing and emerging multicore architectures including bus based SoCs, packet switching NoCs and hybrids.\",\"PeriodicalId\":365422,\"journal\":{\"name\":\"2011 IEEE International SOC Conference\",\"volume\":\"10878 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International SOC Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCC.2011.6085077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International SOC Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCC.2011.6085077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Configurable workload generators for multicore architectures
Proposed multicore architectures are usually evaluated using two types of benchmarks: application and synthetic. Application benchmarks use well understood computations to generate well defined workloads. In contrast, synthetic benchmarks are tunable to generate a range of custom workloads. Both classes are currently limited. Existing application benchmarks are inflexible. And the options offered by synthetic benchmarks are too limited to generate a large variety of workload patterns. In this paper we propose novel workload generation methodologies that allow system developers to generate custom benchmarks for desired workload conditions for a variety of existing and multicore architectures. Specifically we describe two configurable workload generators, which we name ConWork and CompWork. ConWork is a configurable synthetic workload generator using which artificial traffic among the processors and memories can be generated. CompWork is a configurable computational workload generator, which can be used to specify vector and matrix applications so as to elicit the desired computational workloads among the processors. Together the two generators provide a number of options to generate workloads to evaluate a variety of performance metrics of existing and emerging multicore architectures including bus based SoCs, packet switching NoCs and hybrids.