HALT对电子封装进行认证:概念验证

R. Ramesham
{"title":"HALT对电子封装进行认证:概念验证","authors":"R. Ramesham","doi":"10.1117/12.2038319","DOIUrl":null,"url":null,"abstract":"A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (–150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.","PeriodicalId":395835,"journal":{"name":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"HALT to qualify electronic packages: a proof of concept\",\"authors\":\"R. Ramesham\",\"doi\":\"10.1117/12.2038319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (–150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.\",\"PeriodicalId\":395835,\"journal\":{\"name\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2038319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Micro and Nano Fabricated Electromechanical and Optical Components","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2038319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

探索了高加速寿命测试(HALT)技术的概念验证,以评估和优化长时间深空任务在宽温度范围(-150°C至+125°C)下的电子封装设计。HALT是一种定制的混合封装测试技术套件,使用极端温度和从0g到50g加速度的动态冲击步骤处理等环境。本研究中使用的HALT测试在不同温度下对测试车辆部件进行重复冲击,以沉淀工艺和/或制造缺陷,以显示设计的薄弱环节。目的是减少产品开发周期,以提高包装设计的质量。采用先进的电子封装设计和表面贴装技术工艺构建了一个测试文章,这被认为对JPL和NASA的各种项目都很有用,即(表面贴装封装,如球栅阵列(BGA),塑料球栅阵列(PBGA),极薄芯片阵列球栅阵列(CVBGA),四平面封装(QFP),微引线框架(MLF)封装,几种无源元件等)。在HALT测试期间,这些包被连接在一起,并被独立监控。然后实施HALT技术,在较短的测试时间内预测这些先进封装技术在长时间深空任务中的可靠性和生存能力。测试用的是先进的电子封装设计,被认为在NASA的各种项目中都很有用。所有先进的电子包装都是独立的菊花链,以监测单个电子包装的连续性。在HALT测试期间,使用数据记录系统监测菊花链包的连续性。我们能够在+125°C到-150°C的温度范围内测试高达40g到50g的冲击水平。HALT系统可以在室温下提供50克的冲击水平。通过将测试板置于从5g到50g的各种g水平,测试持续时间为10分钟至60分钟,高温高达+125°C,低温低至-150°C,进行了几项测试。在HALT测试中,PBGA封装的电连续性测量结果显示为开路,而BGA、MLF和qfp则显示出电连续性测量结果的微小变化。加速试验开始后12小时内,测试板发生PBGA电连续性异常。组装类似的测试板,在-150°C到+125°C之间独立热循环,并通过每个封装设计监测电气连续性。在959个热循环后,测试板上的PBGA封装显示出异常的电连续性行为。每个热循环大约需要2.33小时,因此,仅由于热循环,PBGA的总测试时间为2237小时(或约3.1个月)。加速技术(热循环+冲击)只需要12小时就会导致PBGA电子封装失效。与仅热循环测试相比,这是约186倍的加速(超过2个数量级)。这种加速过程可以为预测给定环境中包组件的寿命节省大量时间和资源,假设两个测试中的故障机制相似。进一步的研究正在进行中,以便对测试板上各种其他先进电子封装组件的HALT技术进行系统评估。有了这些信息,人们就可以用更短的测试程序来估计任务热循环失败的次数。进一步的研究正在进行中,以系统地研究各种成分,恒温范围的两个测试。因此,对于给定的测试板物理性能,可以估计在给定的热和冲击水平下失败的小时数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HALT to qualify electronic packages: a proof of concept
A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (–150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信