矩形约束小环形天线的形状优化

H. Mathis, P. Vontobel
{"title":"矩形约束小环形天线的形状优化","authors":"H. Mathis, P. Vontobel","doi":"10.1109/IZSBC.2000.829231","DOIUrl":null,"url":null,"abstract":"The theoretical optimal shape of a small loop antenna within a rectangular area restriction is derived. Approaches with cut-off corners and rounded corners are proposed and optimal parameters (such as cut-off radius) are calculated. By means of the calculus of variation, a proof is given that the rounded-corner approach is indeed the optimal shape in terms of antenna efficiency if a simple model is assumed; the result is valid for any convex shape constraint.","PeriodicalId":409898,"journal":{"name":"2000 International Zurich Seminar on Broadband Communications. Accessing, Transmission, Networking. Proceedings (Cat. No.00TH8475)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shape optimization for a rectangularly constrained small loop antenna\",\"authors\":\"H. Mathis, P. Vontobel\",\"doi\":\"10.1109/IZSBC.2000.829231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theoretical optimal shape of a small loop antenna within a rectangular area restriction is derived. Approaches with cut-off corners and rounded corners are proposed and optimal parameters (such as cut-off radius) are calculated. By means of the calculus of variation, a proof is given that the rounded-corner approach is indeed the optimal shape in terms of antenna efficiency if a simple model is assumed; the result is valid for any convex shape constraint.\",\"PeriodicalId\":409898,\"journal\":{\"name\":\"2000 International Zurich Seminar on Broadband Communications. Accessing, Transmission, Networking. Proceedings (Cat. No.00TH8475)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 International Zurich Seminar on Broadband Communications. Accessing, Transmission, Networking. Proceedings (Cat. No.00TH8475)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IZSBC.2000.829231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 International Zurich Seminar on Broadband Communications. Accessing, Transmission, Networking. Proceedings (Cat. No.00TH8475)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IZSBC.2000.829231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

推导了矩形面积约束下小环形天线的理论最优形状。提出了截断角法和圆角法,并计算了截断半径等最优参数。利用变分法证明了在假设简单模型的情况下,圆角法确实是天线效率最优的形状;结果对任何凸形约束都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shape optimization for a rectangularly constrained small loop antenna
The theoretical optimal shape of a small loop antenna within a rectangular area restriction is derived. Approaches with cut-off corners and rounded corners are proposed and optimal parameters (such as cut-off radius) are calculated. By means of the calculus of variation, a proof is given that the rounded-corner approach is indeed the optimal shape in terms of antenna efficiency if a simple model is assumed; the result is valid for any convex shape constraint.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信