战斗头盔防头部钝器冲击的计算分析

X. Tan, A. Bagchi
{"title":"战斗头盔防头部钝器冲击的计算分析","authors":"X. Tan, A. Bagchi","doi":"10.1115/imece2019-10903","DOIUrl":null,"url":null,"abstract":"\n Computational modeling provides significant benefits in assessing the helmet performance and identifying promising helmet designs. We develop multi-fidelity computational tools, representative virtual human head and helmet system models to help the design of next generation combat helmet with improved protection against blunt impact. By integrating the fast-running articulated human with personal protective equipment (PPE) biodynamics model with the high-fidelity human head with combat helmet finite element (FE) model, the multi-fidelity approach can be used to efficiently investigate impact-related traumatic brain injury (TBI) in the real-world scenario. The FE model is used to capture the dynamics of the composite helmet shell, foam pad suspension, retention strap and head while the biodynamics model provides the proper kinematics and boundary conditions for the FE model. An orthotropic elasto-plastic material with damage model is employed for the helmet shell. Enhanced tetrahedral elements are used to model the nearly-incompressible tissues. The head with helmet and without helmet under a severe impact due to a fall caused by blast loading are simulated and compared. The resulting biomechanical responses of head acceleration, shear stresses and strains in brain and mechanical injury criterion as well as helmet energy absorption are used to characterize the performance of helmet system.","PeriodicalId":332737,"journal":{"name":"Volume 3: Biomedical and Biotechnology Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computational Analysis of Combat Helmet Protection Against Blunt Impact to Head\",\"authors\":\"X. Tan, A. Bagchi\",\"doi\":\"10.1115/imece2019-10903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Computational modeling provides significant benefits in assessing the helmet performance and identifying promising helmet designs. We develop multi-fidelity computational tools, representative virtual human head and helmet system models to help the design of next generation combat helmet with improved protection against blunt impact. By integrating the fast-running articulated human with personal protective equipment (PPE) biodynamics model with the high-fidelity human head with combat helmet finite element (FE) model, the multi-fidelity approach can be used to efficiently investigate impact-related traumatic brain injury (TBI) in the real-world scenario. The FE model is used to capture the dynamics of the composite helmet shell, foam pad suspension, retention strap and head while the biodynamics model provides the proper kinematics and boundary conditions for the FE model. An orthotropic elasto-plastic material with damage model is employed for the helmet shell. Enhanced tetrahedral elements are used to model the nearly-incompressible tissues. The head with helmet and without helmet under a severe impact due to a fall caused by blast loading are simulated and compared. The resulting biomechanical responses of head acceleration, shear stresses and strains in brain and mechanical injury criterion as well as helmet energy absorption are used to characterize the performance of helmet system.\",\"PeriodicalId\":332737,\"journal\":{\"name\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Biomedical and Biotechnology Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2019-10903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Biomedical and Biotechnology Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2019-10903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

计算建模在评估头盔性能和确定有前途的头盔设计方面提供了显著的好处。我们开发了多保真度计算工具,具有代表性的虚拟人头和头盔系统模型,以帮助设计具有更好的钝冲击防护的下一代战斗头盔。通过将快速奔跑的带有个人防护装备(PPE)的关节人生物动力学模型与带有战斗头盔的高保真人头有限元(FE)模型相结合,多保真度方法可以有效地研究现实场景中与撞击相关的创伤性脑损伤(TBI)。有限元模型用于捕获复合材料头盔外壳、泡沫垫悬吊、固定带和头部的动力学,生物动力学模型为有限元模型提供了适当的运动学和边界条件。头盔外壳采用具有损伤模型的正交各向异性弹塑性材料。增强四面体单元用于模拟几乎不可压缩的组织。模拟和比较了在爆炸载荷作用下,带安全帽和不带安全帽的头部在坠落时的剧烈冲击。利用头部加速度、脑内剪切应力和应变、机械损伤标准以及头盔能量吸收等生物力学响应来表征头盔系统的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Analysis of Combat Helmet Protection Against Blunt Impact to Head
Computational modeling provides significant benefits in assessing the helmet performance and identifying promising helmet designs. We develop multi-fidelity computational tools, representative virtual human head and helmet system models to help the design of next generation combat helmet with improved protection against blunt impact. By integrating the fast-running articulated human with personal protective equipment (PPE) biodynamics model with the high-fidelity human head with combat helmet finite element (FE) model, the multi-fidelity approach can be used to efficiently investigate impact-related traumatic brain injury (TBI) in the real-world scenario. The FE model is used to capture the dynamics of the composite helmet shell, foam pad suspension, retention strap and head while the biodynamics model provides the proper kinematics and boundary conditions for the FE model. An orthotropic elasto-plastic material with damage model is employed for the helmet shell. Enhanced tetrahedral elements are used to model the nearly-incompressible tissues. The head with helmet and without helmet under a severe impact due to a fall caused by blast loading are simulated and compared. The resulting biomechanical responses of head acceleration, shear stresses and strains in brain and mechanical injury criterion as well as helmet energy absorption are used to characterize the performance of helmet system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信