DADR:基于变异系数的深度自适应降维架构

Xuemei Ding, Jielei Chu, Dao Xiang, Tianrui Li
{"title":"DADR:基于变异系数的深度自适应降维架构","authors":"Xuemei Ding, Jielei Chu, Dao Xiang, Tianrui Li","doi":"10.1109/ccis57298.2022.10016418","DOIUrl":null,"url":null,"abstract":"The traditional deep dimensionality reduction methods corresponding to the depth of the model and the dimensionality of each layer depend on empirical settings. In this paper, we propose a deep adaptive dimensionality reduction architecture (DADR) based on the coefficient of variation and Gaussian restricted Boltzmann machine (GRBM) for achieving adaptivity of depth and dimensionality in the dimensionality reduction process. To verily the validity of the proposed model, we introduce two unsupervised algorithms, K-means and spectral clustering (SC), to compare the DADR architecture with all original features, shallow GRBM model, PCA and two advanced feature selection-based dimensionality reduction algorithms (CNAFS and UFSwithOL), respectively. The final experimental results show the performance of the proposed DADR architecture is demonstrated to be superior to the other algorithmic models. The source code is available at https://github.com/dingxm99/DADR.","PeriodicalId":374660,"journal":{"name":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"DADR: Deep adaptive dimensionality reduction architecture based on the coefficient of variation\",\"authors\":\"Xuemei Ding, Jielei Chu, Dao Xiang, Tianrui Li\",\"doi\":\"10.1109/ccis57298.2022.10016418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The traditional deep dimensionality reduction methods corresponding to the depth of the model and the dimensionality of each layer depend on empirical settings. In this paper, we propose a deep adaptive dimensionality reduction architecture (DADR) based on the coefficient of variation and Gaussian restricted Boltzmann machine (GRBM) for achieving adaptivity of depth and dimensionality in the dimensionality reduction process. To verily the validity of the proposed model, we introduce two unsupervised algorithms, K-means and spectral clustering (SC), to compare the DADR architecture with all original features, shallow GRBM model, PCA and two advanced feature selection-based dimensionality reduction algorithms (CNAFS and UFSwithOL), respectively. The final experimental results show the performance of the proposed DADR architecture is demonstrated to be superior to the other algorithmic models. The source code is available at https://github.com/dingxm99/DADR.\",\"PeriodicalId\":374660,\"journal\":{\"name\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ccis57298.2022.10016418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems (CCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ccis57298.2022.10016418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

传统的深度降维方法对应的模型深度和每层的维数依赖于经验设置。本文提出了一种基于变差系数和高斯受限玻尔兹曼机(GRBM)的深度自适应降维架构(DADR),以实现降维过程中深度和维度的自适应。为了验证该模型的有效性,我们引入了K-means和谱聚类(SC)两种无监督算法,分别将DADR架构与所有原始特征、浅GRBM模型、PCA和两种先进的基于特征选择的降维算法(CNAFS和UFSwithOL)进行比较。最后的实验结果表明,所提出的DADR结构的性能优于其他算法模型。源代码可从https://github.com/dingxm99/DADR获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DADR: Deep adaptive dimensionality reduction architecture based on the coefficient of variation
The traditional deep dimensionality reduction methods corresponding to the depth of the model and the dimensionality of each layer depend on empirical settings. In this paper, we propose a deep adaptive dimensionality reduction architecture (DADR) based on the coefficient of variation and Gaussian restricted Boltzmann machine (GRBM) for achieving adaptivity of depth and dimensionality in the dimensionality reduction process. To verily the validity of the proposed model, we introduce two unsupervised algorithms, K-means and spectral clustering (SC), to compare the DADR architecture with all original features, shallow GRBM model, PCA and two advanced feature selection-based dimensionality reduction algorithms (CNAFS and UFSwithOL), respectively. The final experimental results show the performance of the proposed DADR architecture is demonstrated to be superior to the other algorithmic models. The source code is available at https://github.com/dingxm99/DADR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信