一种处理时变信号的新方法

Gai Qiang, Ma Xiaojiang, Zhang Haiyong, Zou Yankun
{"title":"一种处理时变信号的新方法","authors":"Gai Qiang, Ma Xiaojiang, Zhang Haiyong, Zou Yankun","doi":"10.1109/ICR.2001.984881","DOIUrl":null,"url":null,"abstract":"The concept of an empirical mode decomposition method with which any complicated data set can be decomposed into a finite and often small number of intrinsic mode functions (IMF) is introduced. This method is used for time-varying signal analysis and provide a better joint time-frequency resolution than other methods like the STFT, wavelet and the Wigner-Ville distribution. Then we bring forward a new principle of the local wave method and the expression of the intrinsic mode function. We also introduce our new signal decomposition method called local mean mode decomposition (LMMD) which can provide better data mean and results.","PeriodicalId":366998,"journal":{"name":"2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Processing time-varying signals by a new method\",\"authors\":\"Gai Qiang, Ma Xiaojiang, Zhang Haiyong, Zou Yankun\",\"doi\":\"10.1109/ICR.2001.984881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of an empirical mode decomposition method with which any complicated data set can be decomposed into a finite and often small number of intrinsic mode functions (IMF) is introduced. This method is used for time-varying signal analysis and provide a better joint time-frequency resolution than other methods like the STFT, wavelet and the Wigner-Ville distribution. Then we bring forward a new principle of the local wave method and the expression of the intrinsic mode function. We also introduce our new signal decomposition method called local mean mode decomposition (LMMD) which can provide better data mean and results.\",\"PeriodicalId\":366998,\"journal\":{\"name\":\"2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICR.2001.984881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICR.2001.984881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

引入了经验模态分解方法的概念,该方法可以将任何复杂的数据集分解为有限且通常是少量的本征模态函数(IMF)。该方法用于时变信号分析,与STFT、小波和Wigner-Ville分布等方法相比,具有更好的联合时频分辨率。然后提出了一种新的局域波法原理和本征模态函数的表达式。我们还介绍了一种新的信号分解方法,即局部平均模态分解(LMMD),它可以提供更好的数据均值和结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Processing time-varying signals by a new method
The concept of an empirical mode decomposition method with which any complicated data set can be decomposed into a finite and often small number of intrinsic mode functions (IMF) is introduced. This method is used for time-varying signal analysis and provide a better joint time-frequency resolution than other methods like the STFT, wavelet and the Wigner-Ville distribution. Then we bring forward a new principle of the local wave method and the expression of the intrinsic mode function. We also introduce our new signal decomposition method called local mean mode decomposition (LMMD) which can provide better data mean and results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信