关于Alos分解公式的注解

Frido Rolloos
{"title":"关于Alos分解公式的注解","authors":"Frido Rolloos","doi":"10.2139/ssrn.3911280","DOIUrl":null,"url":null,"abstract":"The Alos decomposition formula is written down, but making use of Bachelier price formula instead of the Black-Scholes price formula. Due to the linearity of the Bachelier formula in volatility at the at-the-money strike, the decomposition formula gives an exact expression for the price of a volatility swap.","PeriodicalId":177064,"journal":{"name":"ERN: Other Econometric Modeling: Derivatives (Topic)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on the Alos Decomposition Formula\",\"authors\":\"Frido Rolloos\",\"doi\":\"10.2139/ssrn.3911280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Alos decomposition formula is written down, but making use of Bachelier price formula instead of the Black-Scholes price formula. Due to the linearity of the Bachelier formula in volatility at the at-the-money strike, the decomposition formula gives an exact expression for the price of a volatility swap.\",\"PeriodicalId\":177064,\"journal\":{\"name\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Other Econometric Modeling: Derivatives (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3911280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometric Modeling: Derivatives (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3911280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

写出了Alos分解公式,但使用的是巴利耶价格公式,而不是Black-Scholes价格公式。由于巴切利耶公式在价格行权时波动率的线性,分解公式给出了波动率掉期价格的精确表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on the Alos Decomposition Formula
The Alos decomposition formula is written down, but making use of Bachelier price formula instead of the Black-Scholes price formula. Due to the linearity of the Bachelier formula in volatility at the at-the-money strike, the decomposition formula gives an exact expression for the price of a volatility swap.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信