肿瘤细胞生长的改进随机Gompertz模型

Edward Chi-Fai Lo
{"title":"肿瘤细胞生长的改进随机Gompertz模型","authors":"Edward Chi-Fai Lo","doi":"10.1080/17486700802545543","DOIUrl":null,"url":null,"abstract":"Based upon the deterministic Gompertz law of cell growth, we have proposed a stochastic model of tumour cell growth, in which the size of the tumour cells is bounded. The model takes account of both cell fission (which is an ‘action at a distance’ effect) and mortality too. Accordingly, the density function of the size of the tumour cells obeys a functional Fokker–Planck Equation (FPE) associated with the bounded stochastic process. We apply the Lie-algebraic method to derive the exact analytical solution via an iterative approach. It is found that the density function exhibits an interesting kink-like structure generated by cell fission as time evolves.","PeriodicalId":182719,"journal":{"name":"Comput. Math. Methods Medicine","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"A Modified Stochastic Gompertz Model for Tumour Cell Growth\",\"authors\":\"Edward Chi-Fai Lo\",\"doi\":\"10.1080/17486700802545543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based upon the deterministic Gompertz law of cell growth, we have proposed a stochastic model of tumour cell growth, in which the size of the tumour cells is bounded. The model takes account of both cell fission (which is an ‘action at a distance’ effect) and mortality too. Accordingly, the density function of the size of the tumour cells obeys a functional Fokker–Planck Equation (FPE) associated with the bounded stochastic process. We apply the Lie-algebraic method to derive the exact analytical solution via an iterative approach. It is found that the density function exhibits an interesting kink-like structure generated by cell fission as time evolves.\",\"PeriodicalId\":182719,\"journal\":{\"name\":\"Comput. Math. Methods Medicine\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Math. Methods Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17486700802545543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Methods Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17486700802545543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

基于细胞生长的确定性Gompertz定律,我们提出了一个肿瘤细胞生长的随机模型,其中肿瘤细胞的大小是有界的。该模型同时考虑了细胞裂变(这是一种“超距作用”效应)和死亡。因此,肿瘤细胞大小的密度函数服从与有界随机过程相关的功能性Fokker-Planck方程(FPE)。我们应用lie -代数方法,通过迭代方法推导出精确解析解。结果表明,随着时间的推移,密度函数呈现出由细胞裂变产生的有趣的扭结状结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified Stochastic Gompertz Model for Tumour Cell Growth
Based upon the deterministic Gompertz law of cell growth, we have proposed a stochastic model of tumour cell growth, in which the size of the tumour cells is bounded. The model takes account of both cell fission (which is an ‘action at a distance’ effect) and mortality too. Accordingly, the density function of the size of the tumour cells obeys a functional Fokker–Planck Equation (FPE) associated with the bounded stochastic process. We apply the Lie-algebraic method to derive the exact analytical solution via an iterative approach. It is found that the density function exhibits an interesting kink-like structure generated by cell fission as time evolves.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信