{"title":"催化剂对[三(4,7 -二苯基- 1,10 -菲罗啉)二氯化钌]溶解氧检测荧光猝灭的影响","authors":"Z. Mahmud, S. H. Herman, U. Noor, S. Saharudin","doi":"10.1109/RSM.2013.6706550","DOIUrl":null,"url":null,"abstract":"We present the effect of the catalyst for sol-solution preparation of tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride on the fluorescence quenching behavior. Two types of [Ru(dpp)3]2+ sol-solution were prepared with two types of catalyst namely acid hydrochloric (HCl) and ammonium hydroxide (NH4OH) and each of them was mixed with the dye-solution to form [Ru(dpp)3]2+ sol-gel solution. A polymer optical fiber tip was then coated by each of the solutions respectively by immersion method. A LED source at 460 nm was used as the excitation source and fluorescence emissions intensity was measured using a UV/VIS spectrometer. The results showed that the fiber optic coated with the solution using NH4OH gave higher fluorescence intensity.","PeriodicalId":346255,"journal":{"name":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effect of catalyst on the fluorescence quenching of [Tris (4, 7-diphenyl-1, 10-phenanthroline) ruthenium (II) dichloride] for dissolved oxygen detection\",\"authors\":\"Z. Mahmud, S. H. Herman, U. Noor, S. Saharudin\",\"doi\":\"10.1109/RSM.2013.6706550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the effect of the catalyst for sol-solution preparation of tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride on the fluorescence quenching behavior. Two types of [Ru(dpp)3]2+ sol-solution were prepared with two types of catalyst namely acid hydrochloric (HCl) and ammonium hydroxide (NH4OH) and each of them was mixed with the dye-solution to form [Ru(dpp)3]2+ sol-gel solution. A polymer optical fiber tip was then coated by each of the solutions respectively by immersion method. A LED source at 460 nm was used as the excitation source and fluorescence emissions intensity was measured using a UV/VIS spectrometer. The results showed that the fiber optic coated with the solution using NH4OH gave higher fluorescence intensity.\",\"PeriodicalId\":346255,\"journal\":{\"name\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RSM.2013.6706550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSM 2013 IEEE Regional Symposium on Micro and Nanoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2013.6706550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of catalyst on the fluorescence quenching of [Tris (4, 7-diphenyl-1, 10-phenanthroline) ruthenium (II) dichloride] for dissolved oxygen detection
We present the effect of the catalyst for sol-solution preparation of tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride on the fluorescence quenching behavior. Two types of [Ru(dpp)3]2+ sol-solution were prepared with two types of catalyst namely acid hydrochloric (HCl) and ammonium hydroxide (NH4OH) and each of them was mixed with the dye-solution to form [Ru(dpp)3]2+ sol-gel solution. A polymer optical fiber tip was then coated by each of the solutions respectively by immersion method. A LED source at 460 nm was used as the excitation source and fluorescence emissions intensity was measured using a UV/VIS spectrometer. The results showed that the fiber optic coated with the solution using NH4OH gave higher fluorescence intensity.