利用加权修剪、对数量化卷积神经网络检测心房颤动

Xiu Qi Chang, Ann Feng Chew, Benjamin Chen Ming Choong, Shuhui Wang, Rui Han, W. He, Li Xiaolin, R. Panicker, Deepu John
{"title":"利用加权修剪、对数量化卷积神经网络检测心房颤动","authors":"Xiu Qi Chang, Ann Feng Chew, Benjamin Chen Ming Choong, Shuhui Wang, Rui Han, W. He, Li Xiaolin, R. Panicker, Deepu John","doi":"10.1109/LASCAS53948.2022.9893904","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNN) are a promising tool in medical applications. However, the implementation of complex DNNs on battery-powered devices is challenging due to high energy costs for communication. In this work, a convolutional neural network model is developed for detecting atrial fibrillation from electrocardiogram (ECG) signals. The model demonstrates high performance despite being trained on limited, variable-length input data. Weight pruning and logarithmic quantisation are combined to introduce sparsity and reduce model size, which can be exploited for reduced data movement and lower computational complexity. The final model achieved a $91. 1\\times$ model compression ratio while maintaining high model accuracy of 91.7% and less than 1% loss.","PeriodicalId":356481,"journal":{"name":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Atrial Fibrillation Detection Using Weight-Pruned, Log-Quantised Convolutional Neural Networks\",\"authors\":\"Xiu Qi Chang, Ann Feng Chew, Benjamin Chen Ming Choong, Shuhui Wang, Rui Han, W. He, Li Xiaolin, R. Panicker, Deepu John\",\"doi\":\"10.1109/LASCAS53948.2022.9893904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks (DNN) are a promising tool in medical applications. However, the implementation of complex DNNs on battery-powered devices is challenging due to high energy costs for communication. In this work, a convolutional neural network model is developed for detecting atrial fibrillation from electrocardiogram (ECG) signals. The model demonstrates high performance despite being trained on limited, variable-length input data. Weight pruning and logarithmic quantisation are combined to introduce sparsity and reduce model size, which can be exploited for reduced data movement and lower computational complexity. The final model achieved a $91. 1\\\\times$ model compression ratio while maintaining high model accuracy of 91.7% and less than 1% loss.\",\"PeriodicalId\":356481,\"journal\":{\"name\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LASCAS53948.2022.9893904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 13th Latin America Symposium on Circuits and System (LASCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LASCAS53948.2022.9893904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度神经网络(DNN)是一种很有前途的医学应用工具。然而,由于通信的高能源成本,在电池供电的设备上实现复杂的dnn具有挑战性。在这项工作中,建立了一个卷积神经网络模型,用于从心电图(ECG)信号中检测心房颤动。尽管该模型是在有限的、可变长度的输入数据上训练的,但它仍显示出高性能。权值修剪和对数量化相结合,引入了稀疏性并减小了模型大小,这可以用于减少数据移动和降低计算复杂度。最终型号的售价为91美元。1\times$模型压缩比,同时保持91.7%的高模型精度和小于1%的损失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Atrial Fibrillation Detection Using Weight-Pruned, Log-Quantised Convolutional Neural Networks
Deep neural networks (DNN) are a promising tool in medical applications. However, the implementation of complex DNNs on battery-powered devices is challenging due to high energy costs for communication. In this work, a convolutional neural network model is developed for detecting atrial fibrillation from electrocardiogram (ECG) signals. The model demonstrates high performance despite being trained on limited, variable-length input data. Weight pruning and logarithmic quantisation are combined to introduce sparsity and reduce model size, which can be exploited for reduced data movement and lower computational complexity. The final model achieved a $91. 1\times$ model compression ratio while maintaining high model accuracy of 91.7% and less than 1% loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信