高炉运行可视化过程数据的ICA大规模数据库在线建模

Y. Hijikata, J. Mori, K. Uchida, H. Ogai, M. Ito, S. Matsuzaki, K. Nakamura
{"title":"高炉运行可视化过程数据的ICA大规模数据库在线建模","authors":"Y. Hijikata, J. Mori, K. Uchida, H. Ogai, M. Ito, S. Matsuzaki, K. Nakamura","doi":"10.1109/SICE.2006.315156","DOIUrl":null,"url":null,"abstract":"The large scale database-based online modeling, called LOM, is a type of just-in-time modeling for blast furnace. The database of LOM is so far built by quantizing directly measurement process data. Recently it has been shown that the image data generated by visualizing shaft pressure and stave temperature is very useful for blast furnace operation and guidance. In this paper we try to extend LOM to the one incorporated with the visualized process data. First we extract features of the visualized process data by using independent component analysis (ICA), and add the features (independent components) of the visualized process data, as process data, to the database of LOM. Prediction performance of the extended LOM is illustrated by using real process data","PeriodicalId":309260,"journal":{"name":"2006 SICE-ICASE International Joint Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large Scale Database-based Online Modeling using ICA of Visualized Process Data for Blast Furnace Operation\",\"authors\":\"Y. Hijikata, J. Mori, K. Uchida, H. Ogai, M. Ito, S. Matsuzaki, K. Nakamura\",\"doi\":\"10.1109/SICE.2006.315156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large scale database-based online modeling, called LOM, is a type of just-in-time modeling for blast furnace. The database of LOM is so far built by quantizing directly measurement process data. Recently it has been shown that the image data generated by visualizing shaft pressure and stave temperature is very useful for blast furnace operation and guidance. In this paper we try to extend LOM to the one incorporated with the visualized process data. First we extract features of the visualized process data by using independent component analysis (ICA), and add the features (independent components) of the visualized process data, as process data, to the database of LOM. Prediction performance of the extended LOM is illustrated by using real process data\",\"PeriodicalId\":309260,\"journal\":{\"name\":\"2006 SICE-ICASE International Joint Conference\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 SICE-ICASE International Joint Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2006.315156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 SICE-ICASE International Joint Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2006.315156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于数据库的大规模在线建模(LOM)是一种高炉实时建模方法。目前,LOM数据库是通过直接量化测量过程数据来建立的。近年来的研究表明,高炉井筒压力和炉壁温度的可视化图像数据对高炉运行和指导具有重要意义。在本文中,我们尝试将LOM扩展到包含可视化过程数据的LOM。首先利用独立分量分析(ICA)提取可视化过程数据的特征,并将可视化过程数据的特征(独立分量)作为过程数据添加到LOM数据库中。用实际过程数据说明了扩展LOM的预测性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large Scale Database-based Online Modeling using ICA of Visualized Process Data for Blast Furnace Operation
The large scale database-based online modeling, called LOM, is a type of just-in-time modeling for blast furnace. The database of LOM is so far built by quantizing directly measurement process data. Recently it has been shown that the image data generated by visualizing shaft pressure and stave temperature is very useful for blast furnace operation and guidance. In this paper we try to extend LOM to the one incorporated with the visualized process data. First we extract features of the visualized process data by using independent component analysis (ICA), and add the features (independent components) of the visualized process data, as process data, to the database of LOM. Prediction performance of the extended LOM is illustrated by using real process data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信